基于人工智能的旋转填料床多胺CO2捕集建模与多准则评估

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Theofilos Xenitopoulos , Athanasios I. Papadopoulos , Panos Seferlis
{"title":"基于人工智能的旋转填料床多胺CO2捕集建模与多准则评估","authors":"Theofilos Xenitopoulos ,&nbsp;Athanasios I. Papadopoulos ,&nbsp;Panos Seferlis","doi":"10.1016/j.compchemeng.2025.109400","DOIUrl":null,"url":null,"abstract":"<div><div>Rotating Packed Beds (RPB) are receiving wide attention as a CO<sub>2</sub> capture technology that intensifies mass transfer and enables substantial equipment size reduction compared to conventional packed columns. This study employs a data-driven approach to model CO<sub>2</sub> absorption in a RPB system through experimental literature data for five polyamines across various liquid flow rates, rotational speeds and concentration. Polyamines are promising solvents as the combination of multiple amine groups in the same molecule enables high absorption rate, kinetics and CO<sub>2</sub> solubility, among others. The Artificial Intelligence (AI) algorithms used are Partial Least Squares (PLS), Random Forest Regression (RFR), Light (LightGBM) and Extreme Gradient Boosting Machine (XGBoost), Categorical Boosting (CatBoost), Support Vector Regressor (SVR) and Multilayer Perceptron (MLP). Shapley Additive Explanations (SHAP) is used to analyze the combined influence of key parameters on absorption efficiency. The LightGBM model achieved the highest predictive accuracy in carbon capture rate. It was then used for factorial design of simulations, and calculation of RPB motor power requirement enabling a multi objective assessment. Results revealed that ethylenediamine (EDA) offers superior trade-offs between carbon capture and energy requirement. The work underscores the potential of using directly process-level experimental data to model and investigate the performance in polyamine-based capture systems where sufficient data are not available to develop first-principles models.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"204 ","pages":"Article 109400"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and multi-criteria assessment of polyamine-based CO2 capture in rotating packed beds using artificial intelligence\",\"authors\":\"Theofilos Xenitopoulos ,&nbsp;Athanasios I. Papadopoulos ,&nbsp;Panos Seferlis\",\"doi\":\"10.1016/j.compchemeng.2025.109400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rotating Packed Beds (RPB) are receiving wide attention as a CO<sub>2</sub> capture technology that intensifies mass transfer and enables substantial equipment size reduction compared to conventional packed columns. This study employs a data-driven approach to model CO<sub>2</sub> absorption in a RPB system through experimental literature data for five polyamines across various liquid flow rates, rotational speeds and concentration. Polyamines are promising solvents as the combination of multiple amine groups in the same molecule enables high absorption rate, kinetics and CO<sub>2</sub> solubility, among others. The Artificial Intelligence (AI) algorithms used are Partial Least Squares (PLS), Random Forest Regression (RFR), Light (LightGBM) and Extreme Gradient Boosting Machine (XGBoost), Categorical Boosting (CatBoost), Support Vector Regressor (SVR) and Multilayer Perceptron (MLP). Shapley Additive Explanations (SHAP) is used to analyze the combined influence of key parameters on absorption efficiency. The LightGBM model achieved the highest predictive accuracy in carbon capture rate. It was then used for factorial design of simulations, and calculation of RPB motor power requirement enabling a multi objective assessment. Results revealed that ethylenediamine (EDA) offers superior trade-offs between carbon capture and energy requirement. The work underscores the potential of using directly process-level experimental data to model and investigate the performance in polyamine-based capture systems where sufficient data are not available to develop first-principles models.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"204 \",\"pages\":\"Article 109400\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009813542500403X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009813542500403X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

旋转填料床(RPB)作为一种二氧化碳捕获技术正受到广泛关注,与传统填料塔相比,它加强了传质,使设备尺寸大大减小。本研究采用数据驱动的方法,通过五种多胺在不同液体流速、转速和浓度下的实验文献数据,对RPB系统中的CO2吸收进行了建模。多胺是一种很有前途的溶剂,因为在同一分子中多个胺基团的组合具有高吸收率、动力学和二氧化碳溶解度等优点。使用的人工智能(AI)算法是偏最小二乘(PLS),随机森林回归(RFR),光(LightGBM)和极端梯度增强机(XGBoost),分类增强(CatBoost),支持向量回归(SVR)和多层感知器(MLP)。采用Shapley加性解释(SHAP)分析了关键参数对吸光效率的综合影响。LightGBM模型对碳捕获率的预测精度最高。然后将其用于模拟的析因设计,并计算RPB电机功率需求,从而实现多目标评估。结果表明,乙二胺(EDA)在碳捕获和能量需求之间提供了优越的权衡。这项工作强调了直接使用过程级实验数据来建模和研究基于多胺的捕获系统的性能的潜力,在这些系统中没有足够的数据来开发第一原理模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and multi-criteria assessment of polyamine-based CO2 capture in rotating packed beds using artificial intelligence
Rotating Packed Beds (RPB) are receiving wide attention as a CO2 capture technology that intensifies mass transfer and enables substantial equipment size reduction compared to conventional packed columns. This study employs a data-driven approach to model CO2 absorption in a RPB system through experimental literature data for five polyamines across various liquid flow rates, rotational speeds and concentration. Polyamines are promising solvents as the combination of multiple amine groups in the same molecule enables high absorption rate, kinetics and CO2 solubility, among others. The Artificial Intelligence (AI) algorithms used are Partial Least Squares (PLS), Random Forest Regression (RFR), Light (LightGBM) and Extreme Gradient Boosting Machine (XGBoost), Categorical Boosting (CatBoost), Support Vector Regressor (SVR) and Multilayer Perceptron (MLP). Shapley Additive Explanations (SHAP) is used to analyze the combined influence of key parameters on absorption efficiency. The LightGBM model achieved the highest predictive accuracy in carbon capture rate. It was then used for factorial design of simulations, and calculation of RPB motor power requirement enabling a multi objective assessment. Results revealed that ethylenediamine (EDA) offers superior trade-offs between carbon capture and energy requirement. The work underscores the potential of using directly process-level experimental data to model and investigate the performance in polyamine-based capture systems where sufficient data are not available to develop first-principles models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信