利用MMT@CuFe2O4催化活化过氧单硫酸酯降解萘普生和双氯芬酸的研究

Mohammad Reza Zare , Nezamaddin Mengelizadeh , Zeinab Alizadeh , Morteza khodadadi Saloot , Mohammad Darvishmotevalli , Fatemeh Kazemi , Abdolrasoul Rahmani , Zeinab Habibi
{"title":"利用MMT@CuFe2O4催化活化过氧单硫酸酯降解萘普生和双氯芬酸的研究","authors":"Mohammad Reza Zare ,&nbsp;Nezamaddin Mengelizadeh ,&nbsp;Zeinab Alizadeh ,&nbsp;Morteza khodadadi Saloot ,&nbsp;Mohammad Darvishmotevalli ,&nbsp;Fatemeh Kazemi ,&nbsp;Abdolrasoul Rahmani ,&nbsp;Zeinab Habibi","doi":"10.1016/j.esi.2025.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>The presence of naproxen (NPX) and diclofenac (DCF) in aquatic environments poses a serious threat to ecosystems and human health due to their persistence and biological activity. Conventional treatment methods often fail to completely remove these pollutants, highlighting the need for efficient and environmentally friendly alternatives. In this study, a novel copper ferrite-loaded montmorillonite (MMT@CuFe₂O₄) composite was synthesized and applied in peroxymonosulfate (PMS) activation to degrade NPX and DCF. Structural analyses confirmed the successful fabrication of the catalyst, featuring a surface area of 43.55 m²/g, an average pore diameter of 11.89 nm, and a particle size of 12.50 nm. Response surface methodology (RSM) with ANOVA results (R² &gt; 0.89, p &lt; 0.0001) effectively described the influence and interaction of operational parameters. Optimal conditions (pH 9, PMS dosage 1.497 mM, reaction time 21.95 min, pollutant concentration 5 mg/L, and catalyst dosage 151.64 mg/L) yielded removal efficiencies of 99.91 % for DCF and 95.41 % for NPX. The inhibitory effect of anions on pollutant removal followed the order: phosphate &gt; sulfate &gt; nitrate &gt; bicarbonate &gt; chloride. More than 80 % mineralization and a BOD₅/COD ratio &gt; 0.4 confirmed conversion to biodegradable products, with m-xylene, 2-oxopropanoic acid, and indolin-2-one identified as the final degradation intermediates. Toxicity assessment using plant growth indicated a relative growth rate of 95.19 %. Radical quenching experiments revealed that <sup>1</sup>O<sub>2</sub>, O<sub>2</sub><sup>•-</sup>, <sup>•</sup>OH, and SO<sub>4</sub><sup>•-</sup> were the main reactive species. The reaction stoichiometric efficiency (RSE<sup>)</sup> of PMS was evaluated for various activation methods, with the MMT@CuFe₂O₄ catalyst showing the highest efficiency.</div></div>","PeriodicalId":100486,"journal":{"name":"Environmental Surfaces and Interfaces","volume":"3 ","pages":"Pages 208-223"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation of naproxen and diclofenac from aqueous solutions via catalytic activation of peroxymonosulfate using MMT@CuFe2O4\",\"authors\":\"Mohammad Reza Zare ,&nbsp;Nezamaddin Mengelizadeh ,&nbsp;Zeinab Alizadeh ,&nbsp;Morteza khodadadi Saloot ,&nbsp;Mohammad Darvishmotevalli ,&nbsp;Fatemeh Kazemi ,&nbsp;Abdolrasoul Rahmani ,&nbsp;Zeinab Habibi\",\"doi\":\"10.1016/j.esi.2025.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The presence of naproxen (NPX) and diclofenac (DCF) in aquatic environments poses a serious threat to ecosystems and human health due to their persistence and biological activity. Conventional treatment methods often fail to completely remove these pollutants, highlighting the need for efficient and environmentally friendly alternatives. In this study, a novel copper ferrite-loaded montmorillonite (MMT@CuFe₂O₄) composite was synthesized and applied in peroxymonosulfate (PMS) activation to degrade NPX and DCF. Structural analyses confirmed the successful fabrication of the catalyst, featuring a surface area of 43.55 m²/g, an average pore diameter of 11.89 nm, and a particle size of 12.50 nm. Response surface methodology (RSM) with ANOVA results (R² &gt; 0.89, p &lt; 0.0001) effectively described the influence and interaction of operational parameters. Optimal conditions (pH 9, PMS dosage 1.497 mM, reaction time 21.95 min, pollutant concentration 5 mg/L, and catalyst dosage 151.64 mg/L) yielded removal efficiencies of 99.91 % for DCF and 95.41 % for NPX. The inhibitory effect of anions on pollutant removal followed the order: phosphate &gt; sulfate &gt; nitrate &gt; bicarbonate &gt; chloride. More than 80 % mineralization and a BOD₅/COD ratio &gt; 0.4 confirmed conversion to biodegradable products, with m-xylene, 2-oxopropanoic acid, and indolin-2-one identified as the final degradation intermediates. Toxicity assessment using plant growth indicated a relative growth rate of 95.19 %. Radical quenching experiments revealed that <sup>1</sup>O<sub>2</sub>, O<sub>2</sub><sup>•-</sup>, <sup>•</sup>OH, and SO<sub>4</sub><sup>•-</sup> were the main reactive species. The reaction stoichiometric efficiency (RSE<sup>)</sup> of PMS was evaluated for various activation methods, with the MMT@CuFe₂O₄ catalyst showing the highest efficiency.</div></div>\",\"PeriodicalId\":100486,\"journal\":{\"name\":\"Environmental Surfaces and Interfaces\",\"volume\":\"3 \",\"pages\":\"Pages 208-223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Surfaces and Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949864325000177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Surfaces and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949864325000177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

萘普生(NPX)和双氯芬酸(DCF)在水生环境中的存在由于其持久性和生物活性对生态系统和人类健康构成严重威胁。传统的处理方法往往不能完全去除这些污染物,因此需要高效和环保的替代方法。本研究合成了一种新型铁酸铜负载蒙脱土(MMT@CuFe₂O₄)复合材料,并将其应用于过氧单硫酸盐(PMS)活化降解NPX和DCF。结构分析证实了该催化剂的成功制备,其表面积为43.55 m²/g,平均孔径为11.89 nm,粒径为12.50 nm。响应面法(RSM)与方差分析结果(R²> 0.89, p <; 0.0001)有效地描述了操作参数的影响和相互作用。最佳条件(pH 9, PMS投加量1.497 mM,反应时间21.95 min,污染物浓度5 mg/L,催化剂投加量151.64 mg/L)对DCF的去除率为99.91 %,对NPX的去除率为95.41 %。阴离子对污染物去除的抑制作用顺序为:磷酸盐>; 硫酸盐>; 硝酸盐>; 碳酸氢盐>; 氯化物。超过80 %矿化和BOD₅/COD比>; 0.4确认转化为可生物降解产品,其中间二甲苯,2-氧丙酸和吲哚林-2- 1被确定为最终降解中间体。植物生长毒性评价表明,相对生长速率为95.19 %。自由基猝灭实验表明,1O2、O2•-、•OH和SO4•-是主要的活性物质。对不同活化方式下PMS的反应化学计量效率(RSE)进行了评价,其中MMT@CuFe₂O₄催化剂的效率最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degradation of naproxen and diclofenac from aqueous solutions via catalytic activation of peroxymonosulfate using MMT@CuFe2O4
The presence of naproxen (NPX) and diclofenac (DCF) in aquatic environments poses a serious threat to ecosystems and human health due to their persistence and biological activity. Conventional treatment methods often fail to completely remove these pollutants, highlighting the need for efficient and environmentally friendly alternatives. In this study, a novel copper ferrite-loaded montmorillonite (MMT@CuFe₂O₄) composite was synthesized and applied in peroxymonosulfate (PMS) activation to degrade NPX and DCF. Structural analyses confirmed the successful fabrication of the catalyst, featuring a surface area of 43.55 m²/g, an average pore diameter of 11.89 nm, and a particle size of 12.50 nm. Response surface methodology (RSM) with ANOVA results (R² > 0.89, p < 0.0001) effectively described the influence and interaction of operational parameters. Optimal conditions (pH 9, PMS dosage 1.497 mM, reaction time 21.95 min, pollutant concentration 5 mg/L, and catalyst dosage 151.64 mg/L) yielded removal efficiencies of 99.91 % for DCF and 95.41 % for NPX. The inhibitory effect of anions on pollutant removal followed the order: phosphate > sulfate > nitrate > bicarbonate > chloride. More than 80 % mineralization and a BOD₅/COD ratio > 0.4 confirmed conversion to biodegradable products, with m-xylene, 2-oxopropanoic acid, and indolin-2-one identified as the final degradation intermediates. Toxicity assessment using plant growth indicated a relative growth rate of 95.19 %. Radical quenching experiments revealed that 1O2, O2•-, OH, and SO4•- were the main reactive species. The reaction stoichiometric efficiency (RSE) of PMS was evaluated for various activation methods, with the MMT@CuFe₂O₄ catalyst showing the highest efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信