含输运噪声的三维全局修正随机Navier-Stokes方程的尺度极限和大偏差

IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY
Chang Liu , Dejun Luo
{"title":"含输运噪声的三维全局修正随机Navier-Stokes方程的尺度极限和大偏差","authors":"Chang Liu ,&nbsp;Dejun Luo","doi":"10.1016/j.spa.2025.104770","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the globally modified stochastic (hyperviscous) Navier–Stokes equations with transport noise on 3D torus. We first establish the existence and pathwise uniqueness of the weak solutions, and then show their convergence to the solutions of the deterministic 3D globally modified (hyperviscous) Navier–Stokes equations in an appropriate scaling limit. Furthermore, we prove a large deviation principle for the stochastic globally modified hyperviscous system.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"191 ","pages":"Article 104770"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling limit and large deviation for 3D globally modified stochastic Navier–Stokes equations with transport noise\",\"authors\":\"Chang Liu ,&nbsp;Dejun Luo\",\"doi\":\"10.1016/j.spa.2025.104770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the globally modified stochastic (hyperviscous) Navier–Stokes equations with transport noise on 3D torus. We first establish the existence and pathwise uniqueness of the weak solutions, and then show their convergence to the solutions of the deterministic 3D globally modified (hyperviscous) Navier–Stokes equations in an appropriate scaling limit. Furthermore, we prove a large deviation principle for the stochastic globally modified hyperviscous system.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"191 \",\"pages\":\"Article 104770\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925002145\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925002145","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

考虑三维环面上具有输运噪声的全局修正随机(高粘性)Navier-Stokes方程。首先建立了确定三维全局修正(高粘性)Navier-Stokes方程弱解的存在性和路径唯一性,然后在适当的尺度极限下证明了它们的收敛性。进一步证明了随机全局修正高粘性系统的大偏差原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling limit and large deviation for 3D globally modified stochastic Navier–Stokes equations with transport noise
We consider the globally modified stochastic (hyperviscous) Navier–Stokes equations with transport noise on 3D torus. We first establish the existence and pathwise uniqueness of the weak solutions, and then show their convergence to the solutions of the deterministic 3D globally modified (hyperviscous) Navier–Stokes equations in an appropriate scaling limit. Furthermore, we prove a large deviation principle for the stochastic globally modified hyperviscous system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信