LAGOM:基于转换器的药物代谢预测化学语言模型

IF 5.4
Sofia Larsson , Miranda Carlsson , Richard Beckmann , Filip Miljković , Rocío Mercado
{"title":"LAGOM:基于转换器的药物代谢预测化学语言模型","authors":"Sofia Larsson ,&nbsp;Miranda Carlsson ,&nbsp;Richard Beckmann ,&nbsp;Filip Miljković ,&nbsp;Rocío Mercado","doi":"10.1016/j.ailsci.2025.100142","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolite identification studies are an essential but costly and time-consuming component of drug development. Computational methods have the potential to accelerate early-stage drug discovery, particularly with recent advances in deep learning which offer new opportunities to accelerate the process of metabolite prediction. We present LAGOM (Language-model Assisted Generation Of Metabolites), a Transformer-based approach built upon the Chemformer architecture, designed to predict likely metabolic transformations of drug candidates. Our results show that LAGOM performs competitively with, and in some cases surpasses, existing state-of-the-art metabolite prediction tools, demonstrating the potential of language-model-based architectures in chemoinformatics. By integrating diverse data sources and employing data augmentation strategies, we further improve the model’s generalisation and predictive accuracy. The implementation of LAGOM is publicly available at <span><span>github.com/tsofiac/LAGOM</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"8 ","pages":"Article 100142"},"PeriodicalIF":5.4000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LAGOM: A transformer-based chemical language model for drug metabolite prediction\",\"authors\":\"Sofia Larsson ,&nbsp;Miranda Carlsson ,&nbsp;Richard Beckmann ,&nbsp;Filip Miljković ,&nbsp;Rocío Mercado\",\"doi\":\"10.1016/j.ailsci.2025.100142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metabolite identification studies are an essential but costly and time-consuming component of drug development. Computational methods have the potential to accelerate early-stage drug discovery, particularly with recent advances in deep learning which offer new opportunities to accelerate the process of metabolite prediction. We present LAGOM (Language-model Assisted Generation Of Metabolites), a Transformer-based approach built upon the Chemformer architecture, designed to predict likely metabolic transformations of drug candidates. Our results show that LAGOM performs competitively with, and in some cases surpasses, existing state-of-the-art metabolite prediction tools, demonstrating the potential of language-model-based architectures in chemoinformatics. By integrating diverse data sources and employing data augmentation strategies, we further improve the model’s generalisation and predictive accuracy. The implementation of LAGOM is publicly available at <span><span>github.com/tsofiac/LAGOM</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":72304,\"journal\":{\"name\":\"Artificial intelligence in the life sciences\",\"volume\":\"8 \",\"pages\":\"Article 100142\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence in the life sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667318525000182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318525000182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

代谢物鉴定研究是药物开发中一项必要但昂贵且耗时的组成部分。计算方法有可能加速早期药物发现,特别是最近深度学习的进展为加速代谢物预测过程提供了新的机会。我们提出LAGOM(语言模型辅助代谢物生成),这是一种基于transformer的方法,建立在Chemformer架构之上,旨在预测候选药物可能的代谢转化。我们的研究结果表明,LAGOM与现有的最先进的代谢物预测工具相比具有竞争力,在某些情况下甚至超过了这些工具,这证明了基于语言模型的架构在化学信息学中的潜力。通过整合不同的数据源和采用数据增强策略,我们进一步提高了模型的泛化和预测精度。LAGOM的实现可以在github.com/tsofiac/LAGOM上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LAGOM: A transformer-based chemical language model for drug metabolite prediction
Metabolite identification studies are an essential but costly and time-consuming component of drug development. Computational methods have the potential to accelerate early-stage drug discovery, particularly with recent advances in deep learning which offer new opportunities to accelerate the process of metabolite prediction. We present LAGOM (Language-model Assisted Generation Of Metabolites), a Transformer-based approach built upon the Chemformer architecture, designed to predict likely metabolic transformations of drug candidates. Our results show that LAGOM performs competitively with, and in some cases surpasses, existing state-of-the-art metabolite prediction tools, demonstrating the potential of language-model-based architectures in chemoinformatics. By integrating diverse data sources and employing data augmentation strategies, we further improve the model’s generalisation and predictive accuracy. The implementation of LAGOM is publicly available at github.com/tsofiac/LAGOM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信