自动化加速电解质设计减轻氧化还原活性分子和支持盐之间的溶解度竞争

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Juran Noh, , , Heather Marie Job, , , Hieu A. Doan, , , Kee Sung Han, , , Lily A. Robertson, , , Lu Zhang, , , Rajeev Surendran Assary, , , Karl T. Mueller, , , Vijayakumar Murugesan*, , and , Yangang Liang*, 
{"title":"自动化加速电解质设计减轻氧化还原活性分子和支持盐之间的溶解度竞争","authors":"Juran Noh,&nbsp;, ,&nbsp;Heather Marie Job,&nbsp;, ,&nbsp;Hieu A. Doan,&nbsp;, ,&nbsp;Kee Sung Han,&nbsp;, ,&nbsp;Lily A. Robertson,&nbsp;, ,&nbsp;Lu Zhang,&nbsp;, ,&nbsp;Rajeev Surendran Assary,&nbsp;, ,&nbsp;Karl T. Mueller,&nbsp;, ,&nbsp;Vijayakumar Murugesan*,&nbsp;, and ,&nbsp;Yangang Liang*,&nbsp;","doi":"10.1021/acsaem.5c02546","DOIUrl":null,"url":null,"abstract":"<p >In nonaqueous redox-flow batteries (NRFBs), redox-active organic molecules (ROMs) and supporting salts compete for solvation sites, limiting achievable energy density. We combine automated high-throughput experimentation (HTE) with camera-based saturation monitoring and quantitative NMR to measure paired (ROM, salt) solubilities across single and mixed organic solvents. Using 2,1,3-benzothiadiazole (BTZ) with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as a model system, we find that a binary <i>m</i>-xylene/acetonitrile mixture dissolves ≈3 M of both BTZ and LiTFSI─surpassing the previously reported 2 M ceiling for neat acetonitrile─by leveraging complementary solvation (MX is BTZ-philic and salt-phobic; ACN stabilizes LiTFSI). A random-forest model (RMSE ≈ 0.24) trained on solvent descriptors highlights log <i>P</i> and salt concentration as dominant predictors and predicts MX/ACN ≈0.3/0.7 (v/v) to be near-optimal. These formulations retain practical viscosity and ∼5 mS·cm<sup>–1</sup> conductivity at high loading. The workflow provides a reproducible, data-centric route to NRFB electrolyte design and motivates an open, standardized dual-solute solubility resource for accelerated electrolyte discovery.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 18","pages":"13978–13985"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automation-Accelerated Electrolyte Design Mitigates Solubility Competition between Redox-Active Molecules and Supporting Salts\",\"authors\":\"Juran Noh,&nbsp;, ,&nbsp;Heather Marie Job,&nbsp;, ,&nbsp;Hieu A. Doan,&nbsp;, ,&nbsp;Kee Sung Han,&nbsp;, ,&nbsp;Lily A. Robertson,&nbsp;, ,&nbsp;Lu Zhang,&nbsp;, ,&nbsp;Rajeev Surendran Assary,&nbsp;, ,&nbsp;Karl T. Mueller,&nbsp;, ,&nbsp;Vijayakumar Murugesan*,&nbsp;, and ,&nbsp;Yangang Liang*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c02546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In nonaqueous redox-flow batteries (NRFBs), redox-active organic molecules (ROMs) and supporting salts compete for solvation sites, limiting achievable energy density. We combine automated high-throughput experimentation (HTE) with camera-based saturation monitoring and quantitative NMR to measure paired (ROM, salt) solubilities across single and mixed organic solvents. Using 2,1,3-benzothiadiazole (BTZ) with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as a model system, we find that a binary <i>m</i>-xylene/acetonitrile mixture dissolves ≈3 M of both BTZ and LiTFSI─surpassing the previously reported 2 M ceiling for neat acetonitrile─by leveraging complementary solvation (MX is BTZ-philic and salt-phobic; ACN stabilizes LiTFSI). A random-forest model (RMSE ≈ 0.24) trained on solvent descriptors highlights log <i>P</i> and salt concentration as dominant predictors and predicts MX/ACN ≈0.3/0.7 (v/v) to be near-optimal. These formulations retain practical viscosity and ∼5 mS·cm<sup>–1</sup> conductivity at high loading. The workflow provides a reproducible, data-centric route to NRFB electrolyte design and motivates an open, standardized dual-solute solubility resource for accelerated electrolyte discovery.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 18\",\"pages\":\"13978–13985\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c02546\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c02546","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在非水氧化还原液流电池(nrfb)中,氧化还原活性有机分子(rom)和支持盐会竞争溶剂化位点,从而限制了可实现的能量密度。我们将自动化高通量实验(HTE)与基于相机的饱和度监测和定量NMR相结合,以测量单个和混合有机溶剂的配对(ROM,盐)溶解度。以2,1,3-苯并噻唑(BTZ)和双(三氟甲烷磺酰)亚胺锂(LiTFSI)为模型体系,我们发现,通过互补溶剂化(MX亲BTZ,疏盐;ACN稳定LiTFSI),二元间二甲苯/乙腈混合物溶解了约3 M的BTZ和LiTFSI,超过了之前报道的纯乙腈的2 M上限)。在溶剂描述符上训练的随机森林模型(RMSE≈0.24)突出了log P和盐浓度作为主要预测因子,并预测MX/ACN≈0.3/0.7 (v/v)接近最优。这些配方在高负载下保持实际粘度和~ 5 mS·cm-1电导率。该工作流程为NRFB电解质设计提供了一个可重复的、以数据为中心的途径,并激发了一个开放的、标准化的双溶质溶解度资源,以加速电解质的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automation-Accelerated Electrolyte Design Mitigates Solubility Competition between Redox-Active Molecules and Supporting Salts

Automation-Accelerated Electrolyte Design Mitigates Solubility Competition between Redox-Active Molecules and Supporting Salts

In nonaqueous redox-flow batteries (NRFBs), redox-active organic molecules (ROMs) and supporting salts compete for solvation sites, limiting achievable energy density. We combine automated high-throughput experimentation (HTE) with camera-based saturation monitoring and quantitative NMR to measure paired (ROM, salt) solubilities across single and mixed organic solvents. Using 2,1,3-benzothiadiazole (BTZ) with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as a model system, we find that a binary m-xylene/acetonitrile mixture dissolves ≈3 M of both BTZ and LiTFSI─surpassing the previously reported 2 M ceiling for neat acetonitrile─by leveraging complementary solvation (MX is BTZ-philic and salt-phobic; ACN stabilizes LiTFSI). A random-forest model (RMSE ≈ 0.24) trained on solvent descriptors highlights log P and salt concentration as dominant predictors and predicts MX/ACN ≈0.3/0.7 (v/v) to be near-optimal. These formulations retain practical viscosity and ∼5 mS·cm–1 conductivity at high loading. The workflow provides a reproducible, data-centric route to NRFB electrolyte design and motivates an open, standardized dual-solute solubility resource for accelerated electrolyte discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信