[10]金属s轨道衍生导带在LiIn2SbO6中实现有效的电荷分离:一个结合带结构和分子轨道分析

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jinyu Zhang, , , Guangxiang Lu*, , , Zien Cheng, , , Rihong Cong*, , and , Tao Yang*, 
{"title":"[10]金属s轨道衍生导带在LiIn2SbO6中实现有效的电荷分离:一个结合带结构和分子轨道分析","authors":"Jinyu Zhang,&nbsp;, ,&nbsp;Guangxiang Lu*,&nbsp;, ,&nbsp;Zien Cheng,&nbsp;, ,&nbsp;Rihong Cong*,&nbsp;, and ,&nbsp;Tao Yang*,&nbsp;","doi":"10.1021/acsaem.5c02242","DOIUrl":null,"url":null,"abstract":"<p >Developing efficient photocatalysts for overall water splitting remains a key challenge in solar energy conversion, mainly due to limitations in charge separation and band alignment. Here, we propose a methodological framework that combines band theory with molecular orbital theory to move beyond conventional descriptors limited to band edge positions or crystal structure. This approach enables the rapid discovery and design of photocatalysts with efficient bulk charge transport and separation pathways through orbital composition, orientation, and bonding analysis. Using LiIn<sub>2</sub>SbO<sub>6</sub> as a case study, density functional theory calculations reveal its conduction band minimum (CBM) originates from antibonding interactions between In/Sb 5s and O 2s orbitals, while the valence band maximum (VBM) consists mainly of O 2p nonbonding orbitals. This unique frontier orbital composition and orientation lead to spatially separated electron and hole transport pathways, facilitating bulk charge carrier separation via a one-dimensional covalent network of [In<sub>2</sub>O<sub>10</sub>] and [SbO<sub>6</sub>] units. Then, LiIn<sub>2</sub>SbO<sub>6</sub> was synthesized via solid-state reaction and shows a UV absorption edge ∼3.99 eV. Although the pristine sample is photocatalytically inactive, loading with Pt cocatalyst effectively activates its performance, enabling overall water splitting under UV light with H<sub>2</sub> and O<sub>2</sub> generation rates of 13.7(2) and 6.8(1) μmol/h, respectively, and an apparent quantum yield of 1.84% at 254 nm. This confirms its superior bulk charge carrier separation efficiency. This work highlights the promise of d<sup>10</sup> metal s-orbital-derived CBM for enhancing charge transport and provides a framework for discovering efficient photocatalysts through electronic structure and bonding analyses.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 18","pages":"13884–13893"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"d10 Metal s-Orbital-Derived Conduction Band Enables Efficient Charge Separation in LiIn2SbO6: A Combined Band Structure and Molecular Orbital Analysis\",\"authors\":\"Jinyu Zhang,&nbsp;, ,&nbsp;Guangxiang Lu*,&nbsp;, ,&nbsp;Zien Cheng,&nbsp;, ,&nbsp;Rihong Cong*,&nbsp;, and ,&nbsp;Tao Yang*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c02242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing efficient photocatalysts for overall water splitting remains a key challenge in solar energy conversion, mainly due to limitations in charge separation and band alignment. Here, we propose a methodological framework that combines band theory with molecular orbital theory to move beyond conventional descriptors limited to band edge positions or crystal structure. This approach enables the rapid discovery and design of photocatalysts with efficient bulk charge transport and separation pathways through orbital composition, orientation, and bonding analysis. Using LiIn<sub>2</sub>SbO<sub>6</sub> as a case study, density functional theory calculations reveal its conduction band minimum (CBM) originates from antibonding interactions between In/Sb 5s and O 2s orbitals, while the valence band maximum (VBM) consists mainly of O 2p nonbonding orbitals. This unique frontier orbital composition and orientation lead to spatially separated electron and hole transport pathways, facilitating bulk charge carrier separation via a one-dimensional covalent network of [In<sub>2</sub>O<sub>10</sub>] and [SbO<sub>6</sub>] units. Then, LiIn<sub>2</sub>SbO<sub>6</sub> was synthesized via solid-state reaction and shows a UV absorption edge ∼3.99 eV. Although the pristine sample is photocatalytically inactive, loading with Pt cocatalyst effectively activates its performance, enabling overall water splitting under UV light with H<sub>2</sub> and O<sub>2</sub> generation rates of 13.7(2) and 6.8(1) μmol/h, respectively, and an apparent quantum yield of 1.84% at 254 nm. This confirms its superior bulk charge carrier separation efficiency. This work highlights the promise of d<sup>10</sup> metal s-orbital-derived CBM for enhancing charge transport and provides a framework for discovering efficient photocatalysts through electronic structure and bonding analyses.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 18\",\"pages\":\"13884–13893\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c02242\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c02242","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于电荷分离和能带排列的限制,开发高效的光催化剂用于整体水分解仍然是太阳能转换的关键挑战。在这里,我们提出了一个结合能带理论和分子轨道理论的方法框架,以超越局限于能带边缘位置或晶体结构的传统描述符。这种方法可以通过轨道组成、取向和键合分析,快速发现和设计具有高效体电荷传输和分离途径的光催化剂。以LiIn2SbO6为例,密度泛函理论计算表明,其导带最小值(CBM)来源于In/ sb5s和o2s轨道之间的反键相互作用,而价带最大值(VBM)主要由o2p非键轨道组成。这种独特的前沿轨道组成和取向导致了空间分离的电子和空穴传输路径,促进了通过[In2O10]和[SbO6]单元的一维共价网络分离散装电荷载流子。然后通过固相反应合成LiIn2SbO6,其紫外吸收边为~ 3.99 eV。虽然原始样品没有光催化活性,但负载Pt助催化剂有效地激活了其性能,在紫外光下,H2和O2的生成速率分别为13.7(2)和6.8(1)μmol/h, 254 nm处的表观量子产率为1.84%。这证实了其优越的散装电荷载体分离效率。这项工作强调了d10金属s轨道衍生的CBM在增强电荷输运方面的前景,并为通过电子结构和键分析发现有效的光催化剂提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

d10 Metal s-Orbital-Derived Conduction Band Enables Efficient Charge Separation in LiIn2SbO6: A Combined Band Structure and Molecular Orbital Analysis

d10 Metal s-Orbital-Derived Conduction Band Enables Efficient Charge Separation in LiIn2SbO6: A Combined Band Structure and Molecular Orbital Analysis

Developing efficient photocatalysts for overall water splitting remains a key challenge in solar energy conversion, mainly due to limitations in charge separation and band alignment. Here, we propose a methodological framework that combines band theory with molecular orbital theory to move beyond conventional descriptors limited to band edge positions or crystal structure. This approach enables the rapid discovery and design of photocatalysts with efficient bulk charge transport and separation pathways through orbital composition, orientation, and bonding analysis. Using LiIn2SbO6 as a case study, density functional theory calculations reveal its conduction band minimum (CBM) originates from antibonding interactions between In/Sb 5s and O 2s orbitals, while the valence band maximum (VBM) consists mainly of O 2p nonbonding orbitals. This unique frontier orbital composition and orientation lead to spatially separated electron and hole transport pathways, facilitating bulk charge carrier separation via a one-dimensional covalent network of [In2O10] and [SbO6] units. Then, LiIn2SbO6 was synthesized via solid-state reaction and shows a UV absorption edge ∼3.99 eV. Although the pristine sample is photocatalytically inactive, loading with Pt cocatalyst effectively activates its performance, enabling overall water splitting under UV light with H2 and O2 generation rates of 13.7(2) and 6.8(1) μmol/h, respectively, and an apparent quantum yield of 1.84% at 254 nm. This confirms its superior bulk charge carrier separation efficiency. This work highlights the promise of d10 metal s-orbital-derived CBM for enhancing charge transport and provides a framework for discovering efficient photocatalysts through electronic structure and bonding analyses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信