高性能和耐久性质子交换膜水电解槽材料工程

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Pablo A. García-Salaberri*, , , Lonneke van Eijk, , , William Bangay, , , Kara J. Ferner, , , Mee H. Ha, , , Michael Moore, , , Ivan Perea, , , Ahmet Kusoglu, , , Marc Secanell, , , Prodip K. Das, , , Nausir Firas, , , Svitlana Pylypenko, , , Melissa Novy, , , Michael Yandrasits, , , Suvash C. Saha, , , Ali Bayat, , , Shawn Litster, , and , Iryna V. Zenyuk, 
{"title":"高性能和耐久性质子交换膜水电解槽材料工程","authors":"Pablo A. García-Salaberri*,&nbsp;, ,&nbsp;Lonneke van Eijk,&nbsp;, ,&nbsp;William Bangay,&nbsp;, ,&nbsp;Kara J. Ferner,&nbsp;, ,&nbsp;Mee H. Ha,&nbsp;, ,&nbsp;Michael Moore,&nbsp;, ,&nbsp;Ivan Perea,&nbsp;, ,&nbsp;Ahmet Kusoglu,&nbsp;, ,&nbsp;Marc Secanell,&nbsp;, ,&nbsp;Prodip K. Das,&nbsp;, ,&nbsp;Nausir Firas,&nbsp;, ,&nbsp;Svitlana Pylypenko,&nbsp;, ,&nbsp;Melissa Novy,&nbsp;, ,&nbsp;Michael Yandrasits,&nbsp;, ,&nbsp;Suvash C. Saha,&nbsp;, ,&nbsp;Ali Bayat,&nbsp;, ,&nbsp;Shawn Litster,&nbsp;, and ,&nbsp;Iryna V. Zenyuk,&nbsp;","doi":"10.1021/acsaem.5c01989","DOIUrl":null,"url":null,"abstract":"<p >Proton exchange membrane water electrolyzers (PEMWEs) are expected to play a crucial role in the global green energy transition during the 21st century. They provide a versatile and sustainable solution for generating hydrogen with very high purity in combination with renewable energies, such as solar and wind. Despite their promise, PEMWEs face several critical problems, including high costs, performance limitations, and durability challenges, particularly at low iridium (Ir) loading on the anode. Advancing next-generation PEMWEs requires extensive work on materials engineering of all cell components, including the catalyst layer (CL), membrane, porous transport layer (PTL), bipolar plate (BPP), and gasket. This task must be performed with the complementary contribution of different modeling and characterization techniques. This review presents a critical perspective from academia, research centers, and industry, mapping main developments, remaining gaps, and strategic pathways to advance PEMWE technology. A focus is devoted to key aspects, such as operation at low Ir loading, membrane durability, multiscale transport layers, porous and non-porous flow fields, multiphysics modeling, and multipurpose characterization techniques, which are thoroughly discussed. By unifying these topics, this review provides readers with the essential knowledge to grasp current developments and tackle tomorrow’s challenges in PEMWE engineering.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 18","pages":"13050–13121"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsaem.5c01989","citationCount":"0","resultStr":"{\"title\":\"Materials Engineering for High Performance and Durability Proton Exchange Membrane Water Electrolyzers\",\"authors\":\"Pablo A. García-Salaberri*,&nbsp;, ,&nbsp;Lonneke van Eijk,&nbsp;, ,&nbsp;William Bangay,&nbsp;, ,&nbsp;Kara J. Ferner,&nbsp;, ,&nbsp;Mee H. Ha,&nbsp;, ,&nbsp;Michael Moore,&nbsp;, ,&nbsp;Ivan Perea,&nbsp;, ,&nbsp;Ahmet Kusoglu,&nbsp;, ,&nbsp;Marc Secanell,&nbsp;, ,&nbsp;Prodip K. Das,&nbsp;, ,&nbsp;Nausir Firas,&nbsp;, ,&nbsp;Svitlana Pylypenko,&nbsp;, ,&nbsp;Melissa Novy,&nbsp;, ,&nbsp;Michael Yandrasits,&nbsp;, ,&nbsp;Suvash C. Saha,&nbsp;, ,&nbsp;Ali Bayat,&nbsp;, ,&nbsp;Shawn Litster,&nbsp;, and ,&nbsp;Iryna V. Zenyuk,&nbsp;\",\"doi\":\"10.1021/acsaem.5c01989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Proton exchange membrane water electrolyzers (PEMWEs) are expected to play a crucial role in the global green energy transition during the 21st century. They provide a versatile and sustainable solution for generating hydrogen with very high purity in combination with renewable energies, such as solar and wind. Despite their promise, PEMWEs face several critical problems, including high costs, performance limitations, and durability challenges, particularly at low iridium (Ir) loading on the anode. Advancing next-generation PEMWEs requires extensive work on materials engineering of all cell components, including the catalyst layer (CL), membrane, porous transport layer (PTL), bipolar plate (BPP), and gasket. This task must be performed with the complementary contribution of different modeling and characterization techniques. This review presents a critical perspective from academia, research centers, and industry, mapping main developments, remaining gaps, and strategic pathways to advance PEMWE technology. A focus is devoted to key aspects, such as operation at low Ir loading, membrane durability, multiscale transport layers, porous and non-porous flow fields, multiphysics modeling, and multipurpose characterization techniques, which are thoroughly discussed. By unifying these topics, this review provides readers with the essential knowledge to grasp current developments and tackle tomorrow’s challenges in PEMWE engineering.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 18\",\"pages\":\"13050–13121\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsaem.5c01989\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c01989\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01989","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜水电解槽(PEMWEs)有望在21世纪全球绿色能源转型中发挥关键作用。他们提供了一种多功能和可持续的解决方案,结合可再生能源,如太阳能和风能,产生非常高纯度的氢。尽管前景光明,但PEMWEs面临着几个关键问题,包括高成本、性能限制和耐久性挑战,特别是在阳极上低铱(Ir)负载的情况下。推进下一代PEMWEs需要在所有电池组件的材料工程方面进行大量工作,包括催化剂层(CL)、膜、多孔传输层(PTL)、双极板(BPP)和垫片。这项任务必须在不同的建模和表征技术的互补贡献下完成。这篇综述从学术界、研究中心和工业界的角度提出了一个关键的观点,描绘了主要的发展、仍然存在的差距和推进PEMWE技术的战略途径。重点关注关键方面,如低Ir负载下的操作、膜耐久性、多尺度输运层、多孔和非多孔流场、多物理场建模和多用途表征技术,这些都进行了深入的讨论。通过统一这些主题,本综述为读者提供了掌握PEMWE工程当前发展和应对未来挑战的基本知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Materials Engineering for High Performance and Durability Proton Exchange Membrane Water Electrolyzers

Proton exchange membrane water electrolyzers (PEMWEs) are expected to play a crucial role in the global green energy transition during the 21st century. They provide a versatile and sustainable solution for generating hydrogen with very high purity in combination with renewable energies, such as solar and wind. Despite their promise, PEMWEs face several critical problems, including high costs, performance limitations, and durability challenges, particularly at low iridium (Ir) loading on the anode. Advancing next-generation PEMWEs requires extensive work on materials engineering of all cell components, including the catalyst layer (CL), membrane, porous transport layer (PTL), bipolar plate (BPP), and gasket. This task must be performed with the complementary contribution of different modeling and characterization techniques. This review presents a critical perspective from academia, research centers, and industry, mapping main developments, remaining gaps, and strategic pathways to advance PEMWE technology. A focus is devoted to key aspects, such as operation at low Ir loading, membrane durability, multiscale transport layers, porous and non-porous flow fields, multiphysics modeling, and multipurpose characterization techniques, which are thoroughly discussed. By unifying these topics, this review provides readers with the essential knowledge to grasp current developments and tackle tomorrow’s challenges in PEMWE engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信