多价离子导电金属和共价有机骨架

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Zhilin Du, , , Wonmi Lee*, , and , Dawei Feng*, 
{"title":"多价离子导电金属和共价有机骨架","authors":"Zhilin Du,&nbsp;, ,&nbsp;Wonmi Lee*,&nbsp;, and ,&nbsp;Dawei Feng*,&nbsp;","doi":"10.1021/acsaem.5c01925","DOIUrl":null,"url":null,"abstract":"<p >Metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) offer uniquely tunable nanoporous architectures, and ionic groups can provide the additional hopping sites, rendering them promising ion conductors for multivalent-ion batteries (e.g., Zn<sup>2+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Al<sup>3+</sup>). This review first examines the unique structures and ion transport mechanisms, highlighting how framework flexibility and functionalization lower activation energies for bulky multivalent cations. We then outline structural design principles, including incorporation of ionic groups to maximize ionic conductivity. Key synthetic methods such as mechanical grinding, ball milling, reflux, hydrothermal/solvothermal, and interfacial synthesis are compared in terms of crystallinity, scalability, and environmental impact. Potential applications of MOF/COF as solid electrolytes, membranes, and interfacial coatings for multivalent batteries to improve cycle life. The future research directions are also proposed to enable MOF/COF materials as practical conductors in next-generation multivalent-ion energy storage systems.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 18","pages":"13040–13049"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivalent Ion-Conducting Metal- and Covalent- Organic Frameworks\",\"authors\":\"Zhilin Du,&nbsp;, ,&nbsp;Wonmi Lee*,&nbsp;, and ,&nbsp;Dawei Feng*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c01925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) offer uniquely tunable nanoporous architectures, and ionic groups can provide the additional hopping sites, rendering them promising ion conductors for multivalent-ion batteries (e.g., Zn<sup>2+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Al<sup>3+</sup>). This review first examines the unique structures and ion transport mechanisms, highlighting how framework flexibility and functionalization lower activation energies for bulky multivalent cations. We then outline structural design principles, including incorporation of ionic groups to maximize ionic conductivity. Key synthetic methods such as mechanical grinding, ball milling, reflux, hydrothermal/solvothermal, and interfacial synthesis are compared in terms of crystallinity, scalability, and environmental impact. Potential applications of MOF/COF as solid electrolytes, membranes, and interfacial coatings for multivalent batteries to improve cycle life. The future research directions are also proposed to enable MOF/COF materials as practical conductors in next-generation multivalent-ion energy storage systems.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 18\",\"pages\":\"13040–13049\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c01925\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01925","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属有机框架(mof)和共价有机框架(COFs)提供了独特的可调纳米孔结构,离子基团可以提供额外的跳跃位点,使它们成为多价离子电池(例如Zn2+, Mg2+, Ca2+, Al3+)的有前途的离子导体。这篇综述首先研究了独特的结构和离子传输机制,强调了框架的灵活性和功能化是如何降低大体积多价阳离子的活化能的。然后,我们概述了结构设计原则,包括结合离子基团,以最大限度地提高离子电导率。从结晶度、可扩展性和环境影响等方面比较了机械研磨、球磨、回流、水热/溶剂热和界面合成等关键合成方法。MOF/COF作为多价电池的固体电解质、膜和界面涂层的潜在应用,以提高循环寿命。未来的研究方向是使MOF/COF材料成为下一代多价离子储能系统的实用导体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multivalent Ion-Conducting Metal- and Covalent- Organic Frameworks

Multivalent Ion-Conducting Metal- and Covalent- Organic Frameworks

Metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) offer uniquely tunable nanoporous architectures, and ionic groups can provide the additional hopping sites, rendering them promising ion conductors for multivalent-ion batteries (e.g., Zn2+, Mg2+, Ca2+, Al3+). This review first examines the unique structures and ion transport mechanisms, highlighting how framework flexibility and functionalization lower activation energies for bulky multivalent cations. We then outline structural design principles, including incorporation of ionic groups to maximize ionic conductivity. Key synthetic methods such as mechanical grinding, ball milling, reflux, hydrothermal/solvothermal, and interfacial synthesis are compared in terms of crystallinity, scalability, and environmental impact. Potential applications of MOF/COF as solid electrolytes, membranes, and interfacial coatings for multivalent batteries to improve cycle life. The future research directions are also proposed to enable MOF/COF materials as practical conductors in next-generation multivalent-ion energy storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信