铁掺杂TiO2用于高效的电化学过氧化氢生产:电子结构调制和缺陷介导的选择性增强

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yu Shao, , , Zhisheng Mao, , , Jiarui Wang, , , Xianfeng Hao, , , Yongchao Jia, , , Yuanhui Xu, , and , Keju Sun*, 
{"title":"铁掺杂TiO2用于高效的电化学过氧化氢生产:电子结构调制和缺陷介导的选择性增强","authors":"Yu Shao,&nbsp;, ,&nbsp;Zhisheng Mao,&nbsp;, ,&nbsp;Jiarui Wang,&nbsp;, ,&nbsp;Xianfeng Hao,&nbsp;, ,&nbsp;Yongchao Jia,&nbsp;, ,&nbsp;Yuanhui Xu,&nbsp;, and ,&nbsp;Keju Sun*,&nbsp;","doi":"10.1021/acsaem.5c02166","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical synthesis of hydrogen peroxide through two-electron oxygen reduction (2e<sup>–</sup> ORR) presents a sustainable alternative to conventional synthesis methods, such as the anthraquinone method. TiO<sub>2</sub>-based materials are promising candidates due to their stability and tunable electronic properties, but their intrinsic 2e<sup>–</sup> ORR activity and selectivity are insufficient for practical applications. Here, we report that strategic Fe doping significantly enhances the 2e<sup>–</sup> ORR performance of TiO<sub>2</sub>. The optimized Fe-TiO<sub>2</sub> catalyst exhibits remarkable activity and selectivity, achieving a 30% increase in H<sub>2</sub>O<sub>2</sub> selectivity (from 47% to 77%) while reducing the electron transfer number from 3.05 to 2.45 in 0.1 M KOH electrolyte. Notably, the material shows substantially improved electrochemical active surface area (ECSA) and ORR kinetics, culminating in an exceptional H<sub>2</sub>O<sub>2</sub> production rate of 406 mmol<b>·</b>g<sub>cat</sub><sup>–1</sup><b>·</b>h<sup>–1</sup> with 97.5% Faraday efficiency at 0 V vs RHE in an H-cell configuration. Density functional theory (DFT) calculations reveal the mechanistic origins of this enhancement: Fe doping effectively narrows the band gap and lowers the oxygen vacancy formation energy, thereby boosting electrical conductivity as confirmed by experimental characterization; and the modified electronic structure increases Bader charge accumulation on the terminal oxygen of adsorbed *OOH intermediates, facilitating protonation at this site and consequently promoting the 2e<sup>–</sup> pathway. These dual effects synergistically enhance both ORR activity and H<sub>2</sub>O<sub>2</sub> selectivity. This study not only presents Fe-TiO<sub>2</sub> as an efficient, earth-abundant catalyst for sustainable H<sub>2</sub>O<sub>2</sub> production but also establishes fundamental design principles for developing advanced metal oxide electrocatalysts through targeted heteroatom doping.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 18","pages":"13808–13817"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe-Doped TiO2 for Efficient Electrochemical Hydrogen Peroxide Production: Electronic Structure Modulation and Defect-Mediated Selectivity Enhancement\",\"authors\":\"Yu Shao,&nbsp;, ,&nbsp;Zhisheng Mao,&nbsp;, ,&nbsp;Jiarui Wang,&nbsp;, ,&nbsp;Xianfeng Hao,&nbsp;, ,&nbsp;Yongchao Jia,&nbsp;, ,&nbsp;Yuanhui Xu,&nbsp;, and ,&nbsp;Keju Sun*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c02166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The electrochemical synthesis of hydrogen peroxide through two-electron oxygen reduction (2e<sup>–</sup> ORR) presents a sustainable alternative to conventional synthesis methods, such as the anthraquinone method. TiO<sub>2</sub>-based materials are promising candidates due to their stability and tunable electronic properties, but their intrinsic 2e<sup>–</sup> ORR activity and selectivity are insufficient for practical applications. Here, we report that strategic Fe doping significantly enhances the 2e<sup>–</sup> ORR performance of TiO<sub>2</sub>. The optimized Fe-TiO<sub>2</sub> catalyst exhibits remarkable activity and selectivity, achieving a 30% increase in H<sub>2</sub>O<sub>2</sub> selectivity (from 47% to 77%) while reducing the electron transfer number from 3.05 to 2.45 in 0.1 M KOH electrolyte. Notably, the material shows substantially improved electrochemical active surface area (ECSA) and ORR kinetics, culminating in an exceptional H<sub>2</sub>O<sub>2</sub> production rate of 406 mmol<b>·</b>g<sub>cat</sub><sup>–1</sup><b>·</b>h<sup>–1</sup> with 97.5% Faraday efficiency at 0 V vs RHE in an H-cell configuration. Density functional theory (DFT) calculations reveal the mechanistic origins of this enhancement: Fe doping effectively narrows the band gap and lowers the oxygen vacancy formation energy, thereby boosting electrical conductivity as confirmed by experimental characterization; and the modified electronic structure increases Bader charge accumulation on the terminal oxygen of adsorbed *OOH intermediates, facilitating protonation at this site and consequently promoting the 2e<sup>–</sup> pathway. These dual effects synergistically enhance both ORR activity and H<sub>2</sub>O<sub>2</sub> selectivity. This study not only presents Fe-TiO<sub>2</sub> as an efficient, earth-abundant catalyst for sustainable H<sub>2</sub>O<sub>2</sub> production but also establishes fundamental design principles for developing advanced metal oxide electrocatalysts through targeted heteroatom doping.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 18\",\"pages\":\"13808–13817\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c02166\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c02166","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过双电子氧还原(2e - ORR)电化学合成过氧化氢,为传统的合成方法(如蒽醌法)提供了一种可持续的替代方法。由于其稳定性和可调谐的电子特性,二氧化钛基材料是很有前途的候选材料,但其固有的2e - ORR活性和选择性不足以用于实际应用。本文中,我们报道了策略性Fe掺杂显著提高了TiO2的2e - ORR性能。优化后的Fe-TiO2催化剂表现出显著的活性和选择性,在0.1 M KOH电解液中,对H2O2的选择性从47%提高到77%,提高了30%,电子转移数从3.05降低到2.45。值得注意的是,该材料显示出显著改善的电化学活性表面积(ECSA)和ORR动力学,最终达到了406 mmol·gcat-1·h-1的特殊H2O2产率和97.5%的法拉第效率。密度泛函理论(DFT)计算揭示了这种增强的机制来源:铁掺杂有效地缩小了带隙,降低了氧空位形成能,从而提高了电导率,实验表征证实了这一点;修饰后的电子结构增加了*OOH中间体末端氧上的Bader电荷积累,促进了该位点的质子化,从而促进了2e -途径。这些双重作用协同增强了ORR活性和H2O2选择性。该研究不仅展示了Fe-TiO2是一种高效、丰富的可持续生产H2O2催化剂,而且为通过靶向杂原子掺杂开发先进的金属氧化物电催化剂建立了基本的设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fe-Doped TiO2 for Efficient Electrochemical Hydrogen Peroxide Production: Electronic Structure Modulation and Defect-Mediated Selectivity Enhancement

Fe-Doped TiO2 for Efficient Electrochemical Hydrogen Peroxide Production: Electronic Structure Modulation and Defect-Mediated Selectivity Enhancement

The electrochemical synthesis of hydrogen peroxide through two-electron oxygen reduction (2e ORR) presents a sustainable alternative to conventional synthesis methods, such as the anthraquinone method. TiO2-based materials are promising candidates due to their stability and tunable electronic properties, but their intrinsic 2e ORR activity and selectivity are insufficient for practical applications. Here, we report that strategic Fe doping significantly enhances the 2e ORR performance of TiO2. The optimized Fe-TiO2 catalyst exhibits remarkable activity and selectivity, achieving a 30% increase in H2O2 selectivity (from 47% to 77%) while reducing the electron transfer number from 3.05 to 2.45 in 0.1 M KOH electrolyte. Notably, the material shows substantially improved electrochemical active surface area (ECSA) and ORR kinetics, culminating in an exceptional H2O2 production rate of 406 mmol·gcat–1·h–1 with 97.5% Faraday efficiency at 0 V vs RHE in an H-cell configuration. Density functional theory (DFT) calculations reveal the mechanistic origins of this enhancement: Fe doping effectively narrows the band gap and lowers the oxygen vacancy formation energy, thereby boosting electrical conductivity as confirmed by experimental characterization; and the modified electronic structure increases Bader charge accumulation on the terminal oxygen of adsorbed *OOH intermediates, facilitating protonation at this site and consequently promoting the 2e pathway. These dual effects synergistically enhance both ORR activity and H2O2 selectivity. This study not only presents Fe-TiO2 as an efficient, earth-abundant catalyst for sustainable H2O2 production but also establishes fundamental design principles for developing advanced metal oxide electrocatalysts through targeted heteroatom doping.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信