改性Li1.5Al0.5Ge1.5(PO4)3纳米粒子改善pvdf基复合电解质的分散性和界面相容性

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Qing Zhang, , , Zhongyue Wang*, , , Peng Lv, , , Kehan Yu, , and , Wei Wei*, 
{"title":"改性Li1.5Al0.5Ge1.5(PO4)3纳米粒子改善pvdf基复合电解质的分散性和界面相容性","authors":"Qing Zhang,&nbsp;, ,&nbsp;Zhongyue Wang*,&nbsp;, ,&nbsp;Peng Lv,&nbsp;, ,&nbsp;Kehan Yu,&nbsp;, and ,&nbsp;Wei Wei*,&nbsp;","doi":"10.1021/acsaem.5c01901","DOIUrl":null,"url":null,"abstract":"<p >Ceramic-in-polymer composite electrolytes have shown great potential in solid-state lithium metal batteries due to their high safety, outstanding flexibility, and scalable preparation. However, the dispersion and interfacial compatibility of ceramic fillers in the polymer still face challenges, especially for nanoparticles, which hinder the continuous Li<sup>+</sup> migration of composite electrolytes. Herein, Li<sub>1.5</sub>Al<sub>0.5</sub>Ge<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> (LAGP) nanoparticles (∼125 nm) modified by 3-aminopropyl-triethoxysilane (APS) are introduced into poly(vinylidene fluoride) (PVDF) composite electrolytes to enable uniform dispersion and great interfacial compatibility. The influence of APS@LAGP nanoparticles on the electrochemical performance of APS@LAGP-PVDF composite electrolytes is studied. The results show that the 15 wt % APS@LAGP-PVDF composite electrolytes integrate the features of high ionic conductivity (2.36 × 10<sup>–4</sup> S cm<sup>–1</sup> at 30 °C), high lithium-ion transference number (0.60), and high oxidation stability (&gt;5.06 V). Meanwhile, these composite electrolytes exhibit outstanding Li stripping/plating reversibility in lithium symmetric cells (over 3000 h) and demonstrate remarkable cycling performance for solid-state LiFePO<sub>4</sub>|Li (86.3% after 200 cycles) and LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub>|Li (83.8% after 200 cycles) batteries. This work provides a valuable strategy to achieve continuous and rapid Li<sup>+</sup> migration in ceramic-in-polymer composite electrolytes.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 18","pages":"13529–13538"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Li1.5Al0.5Ge1.5(PO4)3 Nanoparticles Improve Dispersibility and Interfacial Compatibility of PVDF-Based Composite Electrolytes\",\"authors\":\"Qing Zhang,&nbsp;, ,&nbsp;Zhongyue Wang*,&nbsp;, ,&nbsp;Peng Lv,&nbsp;, ,&nbsp;Kehan Yu,&nbsp;, and ,&nbsp;Wei Wei*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c01901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ceramic-in-polymer composite electrolytes have shown great potential in solid-state lithium metal batteries due to their high safety, outstanding flexibility, and scalable preparation. However, the dispersion and interfacial compatibility of ceramic fillers in the polymer still face challenges, especially for nanoparticles, which hinder the continuous Li<sup>+</sup> migration of composite electrolytes. Herein, Li<sub>1.5</sub>Al<sub>0.5</sub>Ge<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> (LAGP) nanoparticles (∼125 nm) modified by 3-aminopropyl-triethoxysilane (APS) are introduced into poly(vinylidene fluoride) (PVDF) composite electrolytes to enable uniform dispersion and great interfacial compatibility. The influence of APS@LAGP nanoparticles on the electrochemical performance of APS@LAGP-PVDF composite electrolytes is studied. The results show that the 15 wt % APS@LAGP-PVDF composite electrolytes integrate the features of high ionic conductivity (2.36 × 10<sup>–4</sup> S cm<sup>–1</sup> at 30 °C), high lithium-ion transference number (0.60), and high oxidation stability (&gt;5.06 V). Meanwhile, these composite electrolytes exhibit outstanding Li stripping/plating reversibility in lithium symmetric cells (over 3000 h) and demonstrate remarkable cycling performance for solid-state LiFePO<sub>4</sub>|Li (86.3% after 200 cycles) and LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub>|Li (83.8% after 200 cycles) batteries. This work provides a valuable strategy to achieve continuous and rapid Li<sup>+</sup> migration in ceramic-in-polymer composite electrolytes.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 18\",\"pages\":\"13529–13538\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c01901\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01901","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

陶瓷-聚合物复合电解质由于其高安全性、优异的灵活性和可扩展性,在固态锂金属电池中显示出巨大的潜力。然而,陶瓷填料在聚合物中的分散性和界面相容性仍然面临挑战,特别是纳米颗粒,阻碍了复合电解质Li+的持续迁移。本文将3-氨基丙基三乙氧基硅烷(APS)修饰的Li1.5Al0.5Ge1.5(PO4)3 (LAGP)纳米粒子(~ 125 nm)引入聚偏氟乙烯(PVDF)复合电解质中,使其具有均匀的分散和良好的界面相容性。研究了APS@LAGP纳米颗粒对APS@LAGP-PVDF复合电解质电化学性能的影响。结果表明,15 wt % APS@LAGP-PVDF复合电解质具有高离子电导率(30℃时为2.36 × 10-4 S cm-1)、高锂离子转移数(0.60)和高氧化稳定性(5.06 V)的特点。同时,复合电解质在锂对称电池中表现出优异的锂剥离/电镀可逆性(超过3000 h),对固态LiFePO4|Li电池(200次循环后86.3%)和LiNi0.6Co0.2Mn0.2O2|Li电池(200次循环后83.8%)具有显著的循环性能。这项工作为实现Li+在陶瓷聚合物复合电解质中的连续快速迁移提供了一种有价值的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modified Li1.5Al0.5Ge1.5(PO4)3 Nanoparticles Improve Dispersibility and Interfacial Compatibility of PVDF-Based Composite Electrolytes

Modified Li1.5Al0.5Ge1.5(PO4)3 Nanoparticles Improve Dispersibility and Interfacial Compatibility of PVDF-Based Composite Electrolytes

Ceramic-in-polymer composite electrolytes have shown great potential in solid-state lithium metal batteries due to their high safety, outstanding flexibility, and scalable preparation. However, the dispersion and interfacial compatibility of ceramic fillers in the polymer still face challenges, especially for nanoparticles, which hinder the continuous Li+ migration of composite electrolytes. Herein, Li1.5Al0.5Ge1.5(PO4)3 (LAGP) nanoparticles (∼125 nm) modified by 3-aminopropyl-triethoxysilane (APS) are introduced into poly(vinylidene fluoride) (PVDF) composite electrolytes to enable uniform dispersion and great interfacial compatibility. The influence of APS@LAGP nanoparticles on the electrochemical performance of APS@LAGP-PVDF composite electrolytes is studied. The results show that the 15 wt % APS@LAGP-PVDF composite electrolytes integrate the features of high ionic conductivity (2.36 × 10–4 S cm–1 at 30 °C), high lithium-ion transference number (0.60), and high oxidation stability (>5.06 V). Meanwhile, these composite electrolytes exhibit outstanding Li stripping/plating reversibility in lithium symmetric cells (over 3000 h) and demonstrate remarkable cycling performance for solid-state LiFePO4|Li (86.3% after 200 cycles) and LiNi0.6Co0.2Mn0.2O2|Li (83.8% after 200 cycles) batteries. This work provides a valuable strategy to achieve continuous and rapid Li+ migration in ceramic-in-polymer composite electrolytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信