{"title":"SIGEL:用于空间基因组分析的上下文感知基因组表示学习框架","authors":"Wenlin Li, Maocheng Zhu, Yucheng Xu, Mengqian Huang, Ziyi Wang, Jing Chen, Hao Wu, Xiaobo Sun","doi":"10.1186/s13059-025-03748-7","DOIUrl":null,"url":null,"abstract":"Spatial transcriptomics (ST) integrates spatial information into genomics, yet methods for generating spatially-informed gene representations are limited and computationally intensive. We present SIGEL, a cost-effective framework that derives gene manifolds from ST data by exploiting spatial genomic context. The resulting SIGEL-generated gene representations (SGRs) are context-aware, biologically meaningful, and robust across samples, making them highly effective for key downstream tasks, including imputing missing genes, detecting spatial expression patterns, identifying disease-related genes and interactions, and improving spatial clustering. Extensive experiments across diverse ST datasets validate SIGEL’s effectiveness and highlight its potential in advancing spatial genomics research.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"78 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SIGEL: a context-aware genomic representation learning framework for spatial genomics analysis\",\"authors\":\"Wenlin Li, Maocheng Zhu, Yucheng Xu, Mengqian Huang, Ziyi Wang, Jing Chen, Hao Wu, Xiaobo Sun\",\"doi\":\"10.1186/s13059-025-03748-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial transcriptomics (ST) integrates spatial information into genomics, yet methods for generating spatially-informed gene representations are limited and computationally intensive. We present SIGEL, a cost-effective framework that derives gene manifolds from ST data by exploiting spatial genomic context. The resulting SIGEL-generated gene representations (SGRs) are context-aware, biologically meaningful, and robust across samples, making them highly effective for key downstream tasks, including imputing missing genes, detecting spatial expression patterns, identifying disease-related genes and interactions, and improving spatial clustering. Extensive experiments across diverse ST datasets validate SIGEL’s effectiveness and highlight its potential in advancing spatial genomics research.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03748-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03748-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
SIGEL: a context-aware genomic representation learning framework for spatial genomics analysis
Spatial transcriptomics (ST) integrates spatial information into genomics, yet methods for generating spatially-informed gene representations are limited and computationally intensive. We present SIGEL, a cost-effective framework that derives gene manifolds from ST data by exploiting spatial genomic context. The resulting SIGEL-generated gene representations (SGRs) are context-aware, biologically meaningful, and robust across samples, making them highly effective for key downstream tasks, including imputing missing genes, detecting spatial expression patterns, identifying disease-related genes and interactions, and improving spatial clustering. Extensive experiments across diverse ST datasets validate SIGEL’s effectiveness and highlight its potential in advancing spatial genomics research.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.