ScIsoX:测量单细胞中同种异构体水平转录组复杂性的多维框架

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Siyuan Wu, Ulf Schmitz
{"title":"ScIsoX:测量单细胞中同种异构体水平转录组复杂性的多维框架","authors":"Siyuan Wu, Ulf Schmitz","doi":"10.1186/s13059-025-03758-5","DOIUrl":null,"url":null,"abstract":"Single-cell isoform analysis enables high-resolution characterization of transcript expression, yet analytical frameworks to systematically measure transcriptomic complexity are lacking. Here, we introduce ScIsoX, a computational framework that integrates a novel hierarchical data structure, a suite of complexity metrics, and dedicated visualization tools for isoform-level analysis. ScIsoX supports systematic exploration of global and cell-type-specific isoform expression patterns arising from alternative splicing, revealing multidimensional complexity signatures across diverse datasets—insights often missed by conventional gene-level approaches. We demonstrate the utility of ScIsoX across multiple real-world single-cell isoform sequencing datasets, showcasing its potential as a general framework for transcriptomic complexity analysis.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"48 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ScIsoX: a multidimensional framework for measuring isoform-level transcriptomic complexity in single cells\",\"authors\":\"Siyuan Wu, Ulf Schmitz\",\"doi\":\"10.1186/s13059-025-03758-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell isoform analysis enables high-resolution characterization of transcript expression, yet analytical frameworks to systematically measure transcriptomic complexity are lacking. Here, we introduce ScIsoX, a computational framework that integrates a novel hierarchical data structure, a suite of complexity metrics, and dedicated visualization tools for isoform-level analysis. ScIsoX supports systematic exploration of global and cell-type-specific isoform expression patterns arising from alternative splicing, revealing multidimensional complexity signatures across diverse datasets—insights often missed by conventional gene-level approaches. We demonstrate the utility of ScIsoX across multiple real-world single-cell isoform sequencing datasets, showcasing its potential as a general framework for transcriptomic complexity analysis.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03758-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03758-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单细胞异构体分析能够实现转录物表达的高分辨率表征,但缺乏系统测量转录组复杂性的分析框架。在这里,我们介绍ScIsoX,这是一个计算框架,它集成了一种新颖的分层数据结构、一套复杂性度量和用于异构级分析的专用可视化工具。ScIsoX支持系统地探索由选择性剪接引起的全局和细胞类型特异性异构体表达模式,揭示跨不同数据集的多维复杂性特征,这是传统基因水平方法经常错过的见解。我们展示了ScIsoX在多个真实世界单细胞异构体测序数据集上的实用性,展示了它作为转录组复杂性分析的一般框架的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ScIsoX: a multidimensional framework for measuring isoform-level transcriptomic complexity in single cells
Single-cell isoform analysis enables high-resolution characterization of transcript expression, yet analytical frameworks to systematically measure transcriptomic complexity are lacking. Here, we introduce ScIsoX, a computational framework that integrates a novel hierarchical data structure, a suite of complexity metrics, and dedicated visualization tools for isoform-level analysis. ScIsoX supports systematic exploration of global and cell-type-specific isoform expression patterns arising from alternative splicing, revealing multidimensional complexity signatures across diverse datasets—insights often missed by conventional gene-level approaches. We demonstrate the utility of ScIsoX across multiple real-world single-cell isoform sequencing datasets, showcasing its potential as a general framework for transcriptomic complexity analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信