{"title":"微水滴在真空中过冷的运动学和热力学研究","authors":"Takefumi Handa, Masashi Arakawa, Masato Yamaguchi, Takuya Horio, Akira Terasaki","doi":"10.1039/d5cp02281a","DOIUrl":null,"url":null,"abstract":"Evaporation of water droplets in a vacuum induces rapid evaporative cooling that leads to a supercooled state of water. Observation of supercooled water provides valuable insights into ice nucleation and subsequent freezing processes. Here we introduce 40-μm water droplets into a vacuum to study their cooling and freezing dynamics by several experimental techniques. High-speed imaging is employed to observe oscillatory distortion that reflects surface tension and viscosity of the supercooled droplets and to capture fragmentation of freezing droplets. Observation of whispering gallery modes in the OH stretching Raman band enables precise measurement of the droplet size in the course of evaporation. Furthermore, a freezing curve, i.e., a fraction of frozen droplets as a function of time, is measured by capturing laser-scattering images to discriminate between frozen and unfrozen droplets. The experimental approaches to the evaporation rate and subsequent freezing time, along with thermodynamics simulation based on the Knudsen theory, allow us to discuss homogeneous ice nucleation rates between 232 and 235 K.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"7 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematic and thermodynamic studies on water micro-droplets supercooled in a vacuum\",\"authors\":\"Takefumi Handa, Masashi Arakawa, Masato Yamaguchi, Takuya Horio, Akira Terasaki\",\"doi\":\"10.1039/d5cp02281a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaporation of water droplets in a vacuum induces rapid evaporative cooling that leads to a supercooled state of water. Observation of supercooled water provides valuable insights into ice nucleation and subsequent freezing processes. Here we introduce 40-μm water droplets into a vacuum to study their cooling and freezing dynamics by several experimental techniques. High-speed imaging is employed to observe oscillatory distortion that reflects surface tension and viscosity of the supercooled droplets and to capture fragmentation of freezing droplets. Observation of whispering gallery modes in the OH stretching Raman band enables precise measurement of the droplet size in the course of evaporation. Furthermore, a freezing curve, i.e., a fraction of frozen droplets as a function of time, is measured by capturing laser-scattering images to discriminate between frozen and unfrozen droplets. The experimental approaches to the evaporation rate and subsequent freezing time, along with thermodynamics simulation based on the Knudsen theory, allow us to discuss homogeneous ice nucleation rates between 232 and 235 K.\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5cp02281a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp02281a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Kinematic and thermodynamic studies on water micro-droplets supercooled in a vacuum
Evaporation of water droplets in a vacuum induces rapid evaporative cooling that leads to a supercooled state of water. Observation of supercooled water provides valuable insights into ice nucleation and subsequent freezing processes. Here we introduce 40-μm water droplets into a vacuum to study their cooling and freezing dynamics by several experimental techniques. High-speed imaging is employed to observe oscillatory distortion that reflects surface tension and viscosity of the supercooled droplets and to capture fragmentation of freezing droplets. Observation of whispering gallery modes in the OH stretching Raman band enables precise measurement of the droplet size in the course of evaporation. Furthermore, a freezing curve, i.e., a fraction of frozen droplets as a function of time, is measured by capturing laser-scattering images to discriminate between frozen and unfrozen droplets. The experimental approaches to the evaporation rate and subsequent freezing time, along with thermodynamics simulation based on the Knudsen theory, allow us to discuss homogeneous ice nucleation rates between 232 and 235 K.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.