Marion Pitz, Jutta A. Baldauf, Hans-Peter Piepho, Peng Yu, Heiko Schoof, Annaliese S. Mason, Guoliang Li, Frank Hochholdinger
{"title":"玉米杂种优势相关基因表达互补的调控","authors":"Marion Pitz, Jutta A. Baldauf, Hans-Peter Piepho, Peng Yu, Heiko Schoof, Annaliese S. Mason, Guoliang Li, Frank Hochholdinger","doi":"10.1186/s13059-025-03768-3","DOIUrl":null,"url":null,"abstract":"Classical genetic concepts to explain heterosis attribute the superiority of F1-hybrids over their homozygous parents to the complementation of unfavorable by beneficial alleles (dominance) or to heterozygote advantage (overdominance). Here we analyze 112 intermated B73xMo17 recombinant inbred lines of maize and their backcrosses to their original parents B73 and Mo17 to obtain hybrids with an average heterozygosity of ~ 50%. This genetic architecture allows studying the influence of homozygous and heterozygous genomic regions on gene expression in hybrids. We demonstrate that single parent expression (SPE) complementation explains between − 8% and 29% of the mid-parent heterotic variance in these hybrids. In this expression pattern, consistent with dominance, genes are active in only one parent and in the hybrid, thus increasing the number of expressed genes in hybrids. Furthermore, we establish that eQTL regulating SPE genes are predominantly located in heterozygous regions of the genome. Finally, we identify an SPE gene that regulates lateral root density in hybrids. Remarkably, the activity of this gene depends on the presence of a Mo17 allele in an eQTL that regulates this gene. Here we show that dominance of SPE genes influences the number of active genes in hybrids, while heterozygosity is instrumental for the regulation of these genes. This finding supports the notion that the genetic constitution of distant regulatory elements is instrumental for the activity of heterosis-associated genes. In summary, our results connect genetic variation at regulatory loci and the degree of heterozygosity with phenotypic variation of heterosis via SPE complementation.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"195 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of heterosis-associated gene expression complementation in maize hybrids\",\"authors\":\"Marion Pitz, Jutta A. Baldauf, Hans-Peter Piepho, Peng Yu, Heiko Schoof, Annaliese S. Mason, Guoliang Li, Frank Hochholdinger\",\"doi\":\"10.1186/s13059-025-03768-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical genetic concepts to explain heterosis attribute the superiority of F1-hybrids over their homozygous parents to the complementation of unfavorable by beneficial alleles (dominance) or to heterozygote advantage (overdominance). Here we analyze 112 intermated B73xMo17 recombinant inbred lines of maize and their backcrosses to their original parents B73 and Mo17 to obtain hybrids with an average heterozygosity of ~ 50%. This genetic architecture allows studying the influence of homozygous and heterozygous genomic regions on gene expression in hybrids. We demonstrate that single parent expression (SPE) complementation explains between − 8% and 29% of the mid-parent heterotic variance in these hybrids. In this expression pattern, consistent with dominance, genes are active in only one parent and in the hybrid, thus increasing the number of expressed genes in hybrids. Furthermore, we establish that eQTL regulating SPE genes are predominantly located in heterozygous regions of the genome. Finally, we identify an SPE gene that regulates lateral root density in hybrids. Remarkably, the activity of this gene depends on the presence of a Mo17 allele in an eQTL that regulates this gene. Here we show that dominance of SPE genes influences the number of active genes in hybrids, while heterozygosity is instrumental for the regulation of these genes. This finding supports the notion that the genetic constitution of distant regulatory elements is instrumental for the activity of heterosis-associated genes. In summary, our results connect genetic variation at regulatory loci and the degree of heterozygosity with phenotypic variation of heterosis via SPE complementation.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03768-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03768-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Regulation of heterosis-associated gene expression complementation in maize hybrids
Classical genetic concepts to explain heterosis attribute the superiority of F1-hybrids over their homozygous parents to the complementation of unfavorable by beneficial alleles (dominance) or to heterozygote advantage (overdominance). Here we analyze 112 intermated B73xMo17 recombinant inbred lines of maize and their backcrosses to their original parents B73 and Mo17 to obtain hybrids with an average heterozygosity of ~ 50%. This genetic architecture allows studying the influence of homozygous and heterozygous genomic regions on gene expression in hybrids. We demonstrate that single parent expression (SPE) complementation explains between − 8% and 29% of the mid-parent heterotic variance in these hybrids. In this expression pattern, consistent with dominance, genes are active in only one parent and in the hybrid, thus increasing the number of expressed genes in hybrids. Furthermore, we establish that eQTL regulating SPE genes are predominantly located in heterozygous regions of the genome. Finally, we identify an SPE gene that regulates lateral root density in hybrids. Remarkably, the activity of this gene depends on the presence of a Mo17 allele in an eQTL that regulates this gene. Here we show that dominance of SPE genes influences the number of active genes in hybrids, while heterozygosity is instrumental for the regulation of these genes. This finding supports the notion that the genetic constitution of distant regulatory elements is instrumental for the activity of heterosis-associated genes. In summary, our results connect genetic variation at regulatory loci and the degree of heterozygosity with phenotypic variation of heterosis via SPE complementation.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.