Fabio Banchelli , Marta Garcia-Gasulla , Filippo Mantovani , Joan Vinyals , Josep Pocurull , David Vicente , Beatriz Eguzkitza , Flavio C.C. Galeazzo , Mario C. Acosta , Sergi Girona
{"title":"介绍MareNostrum5:欧洲前百亿亿次节能系统,旨在服务于广泛的科学工作负载","authors":"Fabio Banchelli , Marta Garcia-Gasulla , Filippo Mantovani , Joan Vinyals , Josep Pocurull , David Vicente , Beatriz Eguzkitza , Flavio C.C. Galeazzo , Mario C. Acosta , Sergi Girona","doi":"10.1016/j.future.2025.108125","DOIUrl":null,"url":null,"abstract":"<div><div>MareNostrum5 is a pre-exascale supercomputer at the Barcelona Supercomputing Center (BSC), part of the EuroHPC Joint Undertaking. With a peak performance of 314 petaflops, MareNostrum5 features a hybrid architecture comprising Intel Sapphire Rapids CPUs, NVIDIA Hopper GPUs, and DDR5 and high-bandwidth memory (HBM), organized into four partitions optimized for diverse workloads. This document evaluates MareNostrum5 through micro-benchmarks (floating-point performance, memory bandwidth, interconnect throughput), HPC benchmarks (HPL and HPCG), and application studies using Alya, OpenFOAM, and IFS. It highlights MareNostrum5’s scalability, efficiency, and energy performance, utilizing the EAR (Energy Aware Runtime) framework to assess power consumption and the effects of direct liquid cooling. Additionally, HBM and DDR5 configurations are compared to examine memory performance trade-offs. Designed to complement standard technical documentation, this study provides insights to guide both new and experienced users in optimizing their workloads and maximizing MareNostrum5’s computational capabilities.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"176 ","pages":"Article 108125"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introducing MareNostrum5: A European pre-exascale energy-efficient system designed to serve a broad spectrum of scientific workloads\",\"authors\":\"Fabio Banchelli , Marta Garcia-Gasulla , Filippo Mantovani , Joan Vinyals , Josep Pocurull , David Vicente , Beatriz Eguzkitza , Flavio C.C. Galeazzo , Mario C. Acosta , Sergi Girona\",\"doi\":\"10.1016/j.future.2025.108125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>MareNostrum5 is a pre-exascale supercomputer at the Barcelona Supercomputing Center (BSC), part of the EuroHPC Joint Undertaking. With a peak performance of 314 petaflops, MareNostrum5 features a hybrid architecture comprising Intel Sapphire Rapids CPUs, NVIDIA Hopper GPUs, and DDR5 and high-bandwidth memory (HBM), organized into four partitions optimized for diverse workloads. This document evaluates MareNostrum5 through micro-benchmarks (floating-point performance, memory bandwidth, interconnect throughput), HPC benchmarks (HPL and HPCG), and application studies using Alya, OpenFOAM, and IFS. It highlights MareNostrum5’s scalability, efficiency, and energy performance, utilizing the EAR (Energy Aware Runtime) framework to assess power consumption and the effects of direct liquid cooling. Additionally, HBM and DDR5 configurations are compared to examine memory performance trade-offs. Designed to complement standard technical documentation, this study provides insights to guide both new and experienced users in optimizing their workloads and maximizing MareNostrum5’s computational capabilities.</div></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":\"176 \",\"pages\":\"Article 108125\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X25004194\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25004194","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Introducing MareNostrum5: A European pre-exascale energy-efficient system designed to serve a broad spectrum of scientific workloads
MareNostrum5 is a pre-exascale supercomputer at the Barcelona Supercomputing Center (BSC), part of the EuroHPC Joint Undertaking. With a peak performance of 314 petaflops, MareNostrum5 features a hybrid architecture comprising Intel Sapphire Rapids CPUs, NVIDIA Hopper GPUs, and DDR5 and high-bandwidth memory (HBM), organized into four partitions optimized for diverse workloads. This document evaluates MareNostrum5 through micro-benchmarks (floating-point performance, memory bandwidth, interconnect throughput), HPC benchmarks (HPL and HPCG), and application studies using Alya, OpenFOAM, and IFS. It highlights MareNostrum5’s scalability, efficiency, and energy performance, utilizing the EAR (Energy Aware Runtime) framework to assess power consumption and the effects of direct liquid cooling. Additionally, HBM and DDR5 configurations are compared to examine memory performance trade-offs. Designed to complement standard technical documentation, this study provides insights to guide both new and experienced users in optimizing their workloads and maximizing MareNostrum5’s computational capabilities.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.