边缘云计算网络中物联网设备的ai驱动鲁棒双注意力增强入侵检测框架

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Liang Zhou , Akshat Gaurav , Shin-Hung Pan , Razaz Waheeb Attar , Amal Hassan Alhazmi , Ahmed Alhomoud , Amit Kumar Singh , Brij B. Gupta
{"title":"边缘云计算网络中物联网设备的ai驱动鲁棒双注意力增强入侵检测框架","authors":"Liang Zhou ,&nbsp;Akshat Gaurav ,&nbsp;Shin-Hung Pan ,&nbsp;Razaz Waheeb Attar ,&nbsp;Amal Hassan Alhazmi ,&nbsp;Ahmed Alhomoud ,&nbsp;Amit Kumar Singh ,&nbsp;Brij B. Gupta","doi":"10.1016/j.future.2025.108110","DOIUrl":null,"url":null,"abstract":"<div><div>Intrusion detection is a critical aspect of ensuring network security, especially in Internet of Things (IoT) environments, where the complexity and volume of data present unique challenges. In this context, this paper presents an AI-driven robust intrusion detection framework for intrusion detection in the IoT environment. The detection module in the proposed approach is implemented in the edge layer to detect malicious traffic at an early stage. The attack detection module of the proposed approach integrates channel attention and spatial attention mechanisms to enhance feature extraction and detection precision. The channel attention block of the detection module leverages global average pooling, max pooling, and a shared multilayer perceptron to emphasize interchannel dependencies, while the spatial attention block refines spatial feature maps using convolutional operations on aggregated pooling output. Feature optimization is achieved through the Success History Intelligent Optimizer (SHIO), which reduces features from 41 to 28. The proposed framework achieves 98.4 % accuracy while utilizing 95.7 % fewer trainable parameters compared to traditional approaches like LSTM-based models, offering an efficient and scalable solution for attack detection in IoT environment.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"176 ","pages":"Article 108110"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-driven robust dual attention-enhanced intrusion detection framework for IoT devices in edge-cloud computing networks\",\"authors\":\"Liang Zhou ,&nbsp;Akshat Gaurav ,&nbsp;Shin-Hung Pan ,&nbsp;Razaz Waheeb Attar ,&nbsp;Amal Hassan Alhazmi ,&nbsp;Ahmed Alhomoud ,&nbsp;Amit Kumar Singh ,&nbsp;Brij B. Gupta\",\"doi\":\"10.1016/j.future.2025.108110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Intrusion detection is a critical aspect of ensuring network security, especially in Internet of Things (IoT) environments, where the complexity and volume of data present unique challenges. In this context, this paper presents an AI-driven robust intrusion detection framework for intrusion detection in the IoT environment. The detection module in the proposed approach is implemented in the edge layer to detect malicious traffic at an early stage. The attack detection module of the proposed approach integrates channel attention and spatial attention mechanisms to enhance feature extraction and detection precision. The channel attention block of the detection module leverages global average pooling, max pooling, and a shared multilayer perceptron to emphasize interchannel dependencies, while the spatial attention block refines spatial feature maps using convolutional operations on aggregated pooling output. Feature optimization is achieved through the Success History Intelligent Optimizer (SHIO), which reduces features from 41 to 28. The proposed framework achieves 98.4 % accuracy while utilizing 95.7 % fewer trainable parameters compared to traditional approaches like LSTM-based models, offering an efficient and scalable solution for attack detection in IoT environment.</div></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":\"176 \",\"pages\":\"Article 108110\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X25004042\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25004042","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

入侵检测是确保网络安全的关键方面,特别是在物联网(IoT)环境中,其中数据的复杂性和数量带来了独特的挑战。在此背景下,本文提出了一种用于物联网环境下入侵检测的人工智能驱动的鲁棒入侵检测框架。该方法中的检测模块在边缘层实现,可以在早期检测恶意流量。该方法的攻击检测模块集成了通道注意和空间注意机制,提高了特征提取和检测精度。检测模块的通道注意力块利用全局平均池化、最大池化和共享多层感知器来强调通道间的依赖关系,而空间注意力块则在聚合池化输出上使用卷积操作来细化空间特征映射。通过成功历史智能优化器(SHIO)实现特征优化,将特征从41个减少到28个。与传统方法(如基于lstm的模型)相比,所提出的框架实现了98.4%的准确率,同时使用的可训练参数减少了95.7%,为物联网环境中的攻击检测提供了高效且可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-driven robust dual attention-enhanced intrusion detection framework for IoT devices in edge-cloud computing networks
Intrusion detection is a critical aspect of ensuring network security, especially in Internet of Things (IoT) environments, where the complexity and volume of data present unique challenges. In this context, this paper presents an AI-driven robust intrusion detection framework for intrusion detection in the IoT environment. The detection module in the proposed approach is implemented in the edge layer to detect malicious traffic at an early stage. The attack detection module of the proposed approach integrates channel attention and spatial attention mechanisms to enhance feature extraction and detection precision. The channel attention block of the detection module leverages global average pooling, max pooling, and a shared multilayer perceptron to emphasize interchannel dependencies, while the spatial attention block refines spatial feature maps using convolutional operations on aggregated pooling output. Feature optimization is achieved through the Success History Intelligent Optimizer (SHIO), which reduces features from 41 to 28. The proposed framework achieves 98.4 % accuracy while utilizing 95.7 % fewer trainable parameters compared to traditional approaches like LSTM-based models, offering an efficient and scalable solution for attack detection in IoT environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信