吸湿土工布对降雨入渗条件下淤泥中水分迁移的影响

IF 6.2 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Yipeng Guo , Dahao Zou , Min Hu , Xiong Zhang , Fang Xu , Yongjie Zhang , Jiejing Chen
{"title":"吸湿土工布对降雨入渗条件下淤泥中水分迁移的影响","authors":"Yipeng Guo ,&nbsp;Dahao Zou ,&nbsp;Min Hu ,&nbsp;Xiong Zhang ,&nbsp;Fang Xu ,&nbsp;Yongjie Zhang ,&nbsp;Jiejing Chen","doi":"10.1016/j.geotexmem.2025.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>Silt is widely used in subgrade construction in the middle and lower reaches of the Yellow River in China due to limited availability of high-quality fill. However, its high moisture sensitivity and low strength often lead to pumping, settlement, and deformation. This study investigates the hydraulic performance of a wicking geotextile in silt under simulated rainfall infiltration using one-dimensional soil column experiments. Three installation configurations were evaluated: (i) a control sample (CS) without geotextile, (ii) an embedded sample (ES) with the geotextile fully installed as a capillary barrier, and (iii) a surface-exposed sample (SES) with the geotextile extended to the atmosphere to improve drainage. Suction-volumetric moisture content relationships were monitored at multiple depths, and both water storage capacity and drainage mechanisms were assessed. Results indicate that ES and SES reached stabilization at similar suction thresholds, however, the SES more effectively delayed saturation and facilitated moisture migration by evaporation. Surface exposure induced a relative humidity gradient, generating suction and improving drainage, while a siphon effect redistributed water approximately 25 cm below and 15 cm above the geotextile. These findings confirm that the wicking geotextile can act as a capillary barrier and drainage medium, and provide guidance for silty subgrade design.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"54 1","pages":"Pages 25-35"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of wicking geotextile installation on moisture migration in silt under rainfall infiltration\",\"authors\":\"Yipeng Guo ,&nbsp;Dahao Zou ,&nbsp;Min Hu ,&nbsp;Xiong Zhang ,&nbsp;Fang Xu ,&nbsp;Yongjie Zhang ,&nbsp;Jiejing Chen\",\"doi\":\"10.1016/j.geotexmem.2025.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Silt is widely used in subgrade construction in the middle and lower reaches of the Yellow River in China due to limited availability of high-quality fill. However, its high moisture sensitivity and low strength often lead to pumping, settlement, and deformation. This study investigates the hydraulic performance of a wicking geotextile in silt under simulated rainfall infiltration using one-dimensional soil column experiments. Three installation configurations were evaluated: (i) a control sample (CS) without geotextile, (ii) an embedded sample (ES) with the geotextile fully installed as a capillary barrier, and (iii) a surface-exposed sample (SES) with the geotextile extended to the atmosphere to improve drainage. Suction-volumetric moisture content relationships were monitored at multiple depths, and both water storage capacity and drainage mechanisms were assessed. Results indicate that ES and SES reached stabilization at similar suction thresholds, however, the SES more effectively delayed saturation and facilitated moisture migration by evaporation. Surface exposure induced a relative humidity gradient, generating suction and improving drainage, while a siphon effect redistributed water approximately 25 cm below and 15 cm above the geotextile. These findings confirm that the wicking geotextile can act as a capillary barrier and drainage medium, and provide guidance for silty subgrade design.</div></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"54 1\",\"pages\":\"Pages 25-35\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026611442500113X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026611442500113X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

淤泥在黄河中下游路基建设中被广泛应用,主要是由于高质量的填方有限。然而,其高湿敏性和低强度往往导致泵送,沉降和变形。采用一维土柱试验,研究了吸芯土工布在模拟降雨入渗条件下在淤泥中的水力性能。评估了三种安装配置:(i)没有土工布的对照样品(CS), (ii)完全安装土工布作为毛细管屏障的嵌入样品(ES),以及(iii)表面暴露样品(SES),土工布延伸到大气中以改善排水。在多个深度监测了吸力-体积含水率关系,并评估了储水能力和排水机制。结果表明,ES和SES在相似的吸力阈值下达到稳定,但SES更有效地延迟饱和并促进水分通过蒸发迁移。表面暴露引起相对湿度梯度,产生吸力并改善排水,而虹吸效应将水重新分配到土工布下方约25厘米和上方约15厘米处。这些研究结果证实了吸湿土工布可以作为毛细管屏障和排水介质,为粉质路基设计提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of wicking geotextile installation on moisture migration in silt under rainfall infiltration
Silt is widely used in subgrade construction in the middle and lower reaches of the Yellow River in China due to limited availability of high-quality fill. However, its high moisture sensitivity and low strength often lead to pumping, settlement, and deformation. This study investigates the hydraulic performance of a wicking geotextile in silt under simulated rainfall infiltration using one-dimensional soil column experiments. Three installation configurations were evaluated: (i) a control sample (CS) without geotextile, (ii) an embedded sample (ES) with the geotextile fully installed as a capillary barrier, and (iii) a surface-exposed sample (SES) with the geotextile extended to the atmosphere to improve drainage. Suction-volumetric moisture content relationships were monitored at multiple depths, and both water storage capacity and drainage mechanisms were assessed. Results indicate that ES and SES reached stabilization at similar suction thresholds, however, the SES more effectively delayed saturation and facilitated moisture migration by evaporation. Surface exposure induced a relative humidity gradient, generating suction and improving drainage, while a siphon effect redistributed water approximately 25 cm below and 15 cm above the geotextile. These findings confirm that the wicking geotextile can act as a capillary barrier and drainage medium, and provide guidance for silty subgrade design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信