TiO2/Mn2O3纳米复合材料在不同电解质环境下的电化学性能

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2025-06-30 DOI:10.1002/cnma.202500207
Abinash Kumararaj, Suresh Perumal, Kamala Bharathi Karuppanan, Geetha Arunachalam
{"title":"TiO2/Mn2O3纳米复合材料在不同电解质环境下的电化学性能","authors":"Abinash Kumararaj,&nbsp;Suresh Perumal,&nbsp;Kamala Bharathi Karuppanan,&nbsp;Geetha Arunachalam","doi":"10.1002/cnma.202500207","DOIUrl":null,"url":null,"abstract":"<p>This study examines the electrochemical performance of the TiO<sub>2</sub>/Mn<sub>2</sub>O<sub>3</sub> nanocomposite in different electrolyte environments, which is synthesized by the sol–gel method. The confirmation of the as-prepared composite material is confirmed by X-ray diffraction (XRD), Fourier transform spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Morphological analysis is carried out using high-resolution scanning electron microscopy, while high-resolution transmission electron microscopy reveals the porous morphology, further confirming the successful presence of the nanocomposite. To enhance the electrochemical performance, potassium ferricyanide (K<sub>3</sub>[Fe(CN)<sub>6</sub>]) is introduced as a redox additive in 2M KOH electrolyte. The TiO<sub>2</sub>/Mn<sub>2</sub>O<sub>3</sub> electrode exhibits specific capacitances of 338 Fg<sup>−1</sup> and 594 Fg<sup>−1</sup> at a scan rate of 5 mVs<sup>−1</sup> and 144 Fg<sup>−1</sup> and 1107 Fg<sup>−1</sup> at a current density of 3 Ag<sup>−1</sup> in KOH and RAE electrolytes, respectively. Charge–discharge cycles show improved cyclic stability and coulombic efficiency of 72.2% and 98.3% in RAE at 10 Ag<sup>−1</sup>. The enhanced electrochemical behavior can be attributed to the redox-active nature of the additive, which promotes faster ion diffusion and improved charge storage kinetics. These findings suggest that the TiO<sub>2</sub>/Mn<sub>2</sub>O<sub>3</sub> nanocomposite, in conjunction with a redox additive electrolyte, is a promising candidate for high-performance supercapacitor applications.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Performance of TiO2/Mn2O3 Nanocomposite in Different Electrolyte Environments\",\"authors\":\"Abinash Kumararaj,&nbsp;Suresh Perumal,&nbsp;Kamala Bharathi Karuppanan,&nbsp;Geetha Arunachalam\",\"doi\":\"10.1002/cnma.202500207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study examines the electrochemical performance of the TiO<sub>2</sub>/Mn<sub>2</sub>O<sub>3</sub> nanocomposite in different electrolyte environments, which is synthesized by the sol–gel method. The confirmation of the as-prepared composite material is confirmed by X-ray diffraction (XRD), Fourier transform spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Morphological analysis is carried out using high-resolution scanning electron microscopy, while high-resolution transmission electron microscopy reveals the porous morphology, further confirming the successful presence of the nanocomposite. To enhance the electrochemical performance, potassium ferricyanide (K<sub>3</sub>[Fe(CN)<sub>6</sub>]) is introduced as a redox additive in 2M KOH electrolyte. The TiO<sub>2</sub>/Mn<sub>2</sub>O<sub>3</sub> electrode exhibits specific capacitances of 338 Fg<sup>−1</sup> and 594 Fg<sup>−1</sup> at a scan rate of 5 mVs<sup>−1</sup> and 144 Fg<sup>−1</sup> and 1107 Fg<sup>−1</sup> at a current density of 3 Ag<sup>−1</sup> in KOH and RAE electrolytes, respectively. Charge–discharge cycles show improved cyclic stability and coulombic efficiency of 72.2% and 98.3% in RAE at 10 Ag<sup>−1</sup>. The enhanced electrochemical behavior can be attributed to the redox-active nature of the additive, which promotes faster ion diffusion and improved charge storage kinetics. These findings suggest that the TiO<sub>2</sub>/Mn<sub>2</sub>O<sub>3</sub> nanocomposite, in conjunction with a redox additive electrolyte, is a promising candidate for high-performance supercapacitor applications.</p>\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://aces.onlinelibrary.wiley.com/doi/10.1002/cnma.202500207\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://aces.onlinelibrary.wiley.com/doi/10.1002/cnma.202500207","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了溶胶-凝胶法制备的TiO2/Mn2O3纳米复合材料在不同电解质环境下的电化学性能。通过x射线衍射(XRD)、傅里叶变换光谱、拉曼光谱和x射线光电子能谱对制备的复合材料进行了证实。形态学分析采用高分辨率扫描电镜进行,而高分辨率透射电镜显示多孔形态,进一步证实了纳米复合材料的成功存在。为了提高电化学性能,在2M KOH电解液中引入了铁氰化钾(K3[Fe(CN)6])作为氧化还原添加剂。在KOH和RAE电解质中,当扫描速率为5 mv−1时,TiO2/Mn2O3电极的比电容分别为338 Fg−1和594 Fg−1;当电流密度为3ag−1时,其比电容分别为144 Fg−1和1107 Fg−1。在10 Ag−1的RAE条件下,充放电循环稳定性和库仑效率分别提高了72.2%和98.3%。电化学性能的增强可归因于添加剂的氧化还原活性,它促进了离子的更快扩散和改善了电荷存储动力学。这些发现表明,TiO2/Mn2O3纳米复合材料与氧化还原添加剂电解质结合,是高性能超级电容器应用的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrochemical Performance of TiO2/Mn2O3 Nanocomposite in Different Electrolyte Environments

Electrochemical Performance of TiO2/Mn2O3 Nanocomposite in Different Electrolyte Environments

Electrochemical Performance of TiO2/Mn2O3 Nanocomposite in Different Electrolyte Environments

Electrochemical Performance of TiO2/Mn2O3 Nanocomposite in Different Electrolyte Environments

This study examines the electrochemical performance of the TiO2/Mn2O3 nanocomposite in different electrolyte environments, which is synthesized by the sol–gel method. The confirmation of the as-prepared composite material is confirmed by X-ray diffraction (XRD), Fourier transform spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Morphological analysis is carried out using high-resolution scanning electron microscopy, while high-resolution transmission electron microscopy reveals the porous morphology, further confirming the successful presence of the nanocomposite. To enhance the electrochemical performance, potassium ferricyanide (K3[Fe(CN)6]) is introduced as a redox additive in 2M KOH electrolyte. The TiO2/Mn2O3 electrode exhibits specific capacitances of 338 Fg−1 and 594 Fg−1 at a scan rate of 5 mVs−1 and 144 Fg−1 and 1107 Fg−1 at a current density of 3 Ag−1 in KOH and RAE electrolytes, respectively. Charge–discharge cycles show improved cyclic stability and coulombic efficiency of 72.2% and 98.3% in RAE at 10 Ag−1. The enhanced electrochemical behavior can be attributed to the redox-active nature of the additive, which promotes faster ion diffusion and improved charge storage kinetics. These findings suggest that the TiO2/Mn2O3 nanocomposite, in conjunction with a redox additive electrolyte, is a promising candidate for high-performance supercapacitor applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信