利用燃料电池热回收、LNG膨胀余热与太阳能相结合的集成清洁能源系统研究

IF 2.3 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL
Shoaib Khanmohammadi, Sajjad Khanjani, Hooman Abdi Chaghakaboodi
{"title":"利用燃料电池热回收、LNG膨胀余热与太阳能相结合的集成清洁能源系统研究","authors":"Shoaib Khanmohammadi,&nbsp;Sajjad Khanjani,&nbsp;Hooman Abdi Chaghakaboodi","doi":"10.1002/ep.70029","DOIUrl":null,"url":null,"abstract":"<p>This study examines the impact of integrating proton exchange membrane fuel cell (PEMFC) and reverse osmosis (RO) desalination systems into a solar liquid natural gas (SLNG) system. To this end, two configurations are analyzed: the basic SLNG system and the enhanced SLNG-PEMFC/RO system, incorporating PEMFC and RO technologies. Energy, exergy, and exergo-economic assessments are conducted for both setups. The findings reveal that integrating PEMFC and RO into the SLNG system boosts net output power by 26.22%, energy efficiency by 39.28%, and production revenue by 201%. However, the exergy efficiency, LCOE, and payback period of the SLNG-PEMFC/RO system are 31.84%, 82%, and 205.5% lower, respectively, compared to the base SLNG system. Additionally, increasing PEMFC temperature enhances net output power, energy efficiency, and exergy efficiency by 26.5%, 4.64%, and 11.03%, respectively. On the other hand, higher PEMFC temperatures result in increases of 10.56% in LCOE and 21.5% in production revenue. Notably, PEMFC pressure has the least influence on the performance of the SLNG-PEMFC/RO system.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"44 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of an integrated clean energy system using heat recovery from fuel cell and LNG expansion waste heat combined with solar energy\",\"authors\":\"Shoaib Khanmohammadi,&nbsp;Sajjad Khanjani,&nbsp;Hooman Abdi Chaghakaboodi\",\"doi\":\"10.1002/ep.70029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study examines the impact of integrating proton exchange membrane fuel cell (PEMFC) and reverse osmosis (RO) desalination systems into a solar liquid natural gas (SLNG) system. To this end, two configurations are analyzed: the basic SLNG system and the enhanced SLNG-PEMFC/RO system, incorporating PEMFC and RO technologies. Energy, exergy, and exergo-economic assessments are conducted for both setups. The findings reveal that integrating PEMFC and RO into the SLNG system boosts net output power by 26.22%, energy efficiency by 39.28%, and production revenue by 201%. However, the exergy efficiency, LCOE, and payback period of the SLNG-PEMFC/RO system are 31.84%, 82%, and 205.5% lower, respectively, compared to the base SLNG system. Additionally, increasing PEMFC temperature enhances net output power, energy efficiency, and exergy efficiency by 26.5%, 4.64%, and 11.03%, respectively. On the other hand, higher PEMFC temperatures result in increases of 10.56% in LCOE and 21.5% in production revenue. Notably, PEMFC pressure has the least influence on the performance of the SLNG-PEMFC/RO system.</p>\",\"PeriodicalId\":11701,\"journal\":{\"name\":\"Environmental Progress & Sustainable Energy\",\"volume\":\"44 5\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Progress & Sustainable Energy\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://aiche.onlinelibrary.wiley.com/doi/10.1002/ep.70029\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Progress & Sustainable Energy","FirstCategoryId":"93","ListUrlMain":"https://aiche.onlinelibrary.wiley.com/doi/10.1002/ep.70029","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了将质子交换膜燃料电池(PEMFC)和反渗透(RO)海水淡化系统集成到太阳能液化天然气(SLNG)系统中的影响。为此,分析了两种配置:基本SLNG系统和增强型SLNG-PEMFC/RO系统,该系统结合了PEMFC和RO技术。对两种装置都进行了能源、消耗和消耗经济评估。研究结果表明,将PEMFC和RO集成到SLNG系统中,净输出功率提高了26.22%,能源效率提高了39.28%,生产收益提高了201%。然而,SLNG- pemfc /RO系统的火用效率、LCOE和投资回收期分别比基础SLNG系统低31.84%、82%和205.5%。此外,提高PEMFC温度可使净输出功率、能源效率和火用效率分别提高26.5%、4.64%和11.03%。另一方面,较高的PEMFC温度导致LCOE增加10.56%,生产收入增加21.5%。值得注意的是,PEMFC压力对SLNG-PEMFC/RO系统性能的影响最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation of an integrated clean energy system using heat recovery from fuel cell and LNG expansion waste heat combined with solar energy

Investigation of an integrated clean energy system using heat recovery from fuel cell and LNG expansion waste heat combined with solar energy

Investigation of an integrated clean energy system using heat recovery from fuel cell and LNG expansion waste heat combined with solar energy

Investigation of an integrated clean energy system using heat recovery from fuel cell and LNG expansion waste heat combined with solar energy

This study examines the impact of integrating proton exchange membrane fuel cell (PEMFC) and reverse osmosis (RO) desalination systems into a solar liquid natural gas (SLNG) system. To this end, two configurations are analyzed: the basic SLNG system and the enhanced SLNG-PEMFC/RO system, incorporating PEMFC and RO technologies. Energy, exergy, and exergo-economic assessments are conducted for both setups. The findings reveal that integrating PEMFC and RO into the SLNG system boosts net output power by 26.22%, energy efficiency by 39.28%, and production revenue by 201%. However, the exergy efficiency, LCOE, and payback period of the SLNG-PEMFC/RO system are 31.84%, 82%, and 205.5% lower, respectively, compared to the base SLNG system. Additionally, increasing PEMFC temperature enhances net output power, energy efficiency, and exergy efficiency by 26.5%, 4.64%, and 11.03%, respectively. On the other hand, higher PEMFC temperatures result in increases of 10.56% in LCOE and 21.5% in production revenue. Notably, PEMFC pressure has the least influence on the performance of the SLNG-PEMFC/RO system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Progress & Sustainable Energy
Environmental Progress & Sustainable Energy 环境科学-工程:化工
CiteScore
5.00
自引率
3.60%
发文量
231
审稿时长
4.3 months
期刊介绍: Environmental Progress , a quarterly publication of the American Institute of Chemical Engineers, reports on critical issues like remediation and treatment of solid or aqueous wastes, air pollution, sustainability, and sustainable energy. Each issue helps chemical engineers (and those in related fields) stay on top of technological advances in all areas associated with the environment through feature articles, updates, book and software reviews, and editorials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信