Laura Gioiella, Fabio Micozzi, Morgan McBain, Michele Morici, Alessandro Zona, Andrea Dall’Asta, Barbara G. Simpson, Andre R. Barbosa
{"title":"基于视觉的多层建筑在全尺寸振动台试验中的绝对和相对位移监测","authors":"Laura Gioiella, Fabio Micozzi, Morgan McBain, Michele Morici, Alessandro Zona, Andrea Dall’Asta, Barbara G. Simpson, Andre R. Barbosa","doi":"10.1155/stc/2618220","DOIUrl":null,"url":null,"abstract":"<p>Displacements are among the most important engineering response parameters to be monitored during shake-table testing, with experiments playing a key role in studying the seismic behavior of structures. However, their accurate measurement is not a trivial task when using contact sensors. Computer vision is an attractive alternative for monitoring absolute and relative displacements, and this study presents a new configuration to fully exploit its potential. The proposed solution combines internal and external video cameras. The former is installed on the roof and points downwards to simultaneously acquire the displacements of targets located throughout the height of the building. The latter was installed outside the shake-table platen and tracked the roof displacements to provide redundant measures for control and noise compensation. In this way, the movements of the buildings can be reconstructed with high robustness and precision using a limited number of video cameras. The proposed configuration was applied for the first time during shake-table testing of a full-scale six-story building on the outdoor shake table at the University of California, San Diego. The measurements obtained up to strong dynamic inputs showed the capacity of the proposed approach in real-world environmental conditions and were used for a critical comparison with conventional contact sensors.</p>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/2618220","citationCount":"0","resultStr":"{\"title\":\"Vision-Based Monitoring of Absolute and Relative Displacements in Multistory Buildings During Full-Scale Shake-Table Tests\",\"authors\":\"Laura Gioiella, Fabio Micozzi, Morgan McBain, Michele Morici, Alessandro Zona, Andrea Dall’Asta, Barbara G. Simpson, Andre R. Barbosa\",\"doi\":\"10.1155/stc/2618220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Displacements are among the most important engineering response parameters to be monitored during shake-table testing, with experiments playing a key role in studying the seismic behavior of structures. However, their accurate measurement is not a trivial task when using contact sensors. Computer vision is an attractive alternative for monitoring absolute and relative displacements, and this study presents a new configuration to fully exploit its potential. The proposed solution combines internal and external video cameras. The former is installed on the roof and points downwards to simultaneously acquire the displacements of targets located throughout the height of the building. The latter was installed outside the shake-table platen and tracked the roof displacements to provide redundant measures for control and noise compensation. In this way, the movements of the buildings can be reconstructed with high robustness and precision using a limited number of video cameras. The proposed configuration was applied for the first time during shake-table testing of a full-scale six-story building on the outdoor shake table at the University of California, San Diego. The measurements obtained up to strong dynamic inputs showed the capacity of the proposed approach in real-world environmental conditions and were used for a critical comparison with conventional contact sensors.</p>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/2618220\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/stc/2618220\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/2618220","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Vision-Based Monitoring of Absolute and Relative Displacements in Multistory Buildings During Full-Scale Shake-Table Tests
Displacements are among the most important engineering response parameters to be monitored during shake-table testing, with experiments playing a key role in studying the seismic behavior of structures. However, their accurate measurement is not a trivial task when using contact sensors. Computer vision is an attractive alternative for monitoring absolute and relative displacements, and this study presents a new configuration to fully exploit its potential. The proposed solution combines internal and external video cameras. The former is installed on the roof and points downwards to simultaneously acquire the displacements of targets located throughout the height of the building. The latter was installed outside the shake-table platen and tracked the roof displacements to provide redundant measures for control and noise compensation. In this way, the movements of the buildings can be reconstructed with high robustness and precision using a limited number of video cameras. The proposed configuration was applied for the first time during shake-table testing of a full-scale six-story building on the outdoor shake table at the University of California, San Diego. The measurements obtained up to strong dynamic inputs showed the capacity of the proposed approach in real-world environmental conditions and were used for a critical comparison with conventional contact sensors.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.