{"title":"协同微米开花:CuO-C/NiCo2O4复合材料构建槲皮素电化学传感平台","authors":"Yalai Cen, Yuelan Fang, Xiaokun Li","doi":"10.1002/jccs.70056","DOIUrl":null,"url":null,"abstract":"<p>The pharmacological, biological, and biochemical properties of quercetin hold significant implications in the realms of medicinal chemistry, biochemistry, and clinical medicine. In this study, metal–organic framework (Cu-MOF), nickel nitrate, and cobalt nitrate were used as raw materials, and metal-oxide (CuO-C/NiCo<sub>2</sub>O<sub>4</sub>) composites containing carbonaceous and floral structures were prepared by annealing and co-precipitation techniques. The CuO-C/NiCo<sub>2</sub>O<sub>4</sub>/GCE composite electrode was acquired by embellishing CuO-C/NiCo<sub>2</sub>O<sub>4</sub> on polished glassy carbon electrodes (GCE) using dropwise coating. The synthesized CuO-C/NiCo<sub>2</sub>O<sub>4</sub> was investigated through: (i) scanning electron microscopy (SEM) imaging for morphological evaluation, (ii) X-ray diffraction (XRD) for phase identification, and (iii) X-ray photoelectron spectroscopy (XPS) for elemental state determination. The results revealed that the CuO-C/NiCo₂O₄ composites have a loose and porous surface, an elevated active surface area, high electrical conductivity, and electrocatalytic properties. Based on this result, an electrochemically novel sensor for the detection of quercetin using CuO-C/NiCo₂O₄ composites was developed. The sensor displayed high reproducibility, redox stability, and anti-interference capability in the detection of quercetin. In addition, the peak current measured by this sensor was linearly correlated with the density of quercetin, exhibiting a wide linearity response from 0.1 to 20 μM with an ultralow detection limit of 0.092 μM. These advantages originate in the synergy between CuO-C and NiCo<sub>2</sub>O<sub>4</sub>. Currently, the constructed electrochemical sensor has been successfully employed for the determination of quercetin content in ginkgo biloba leaf.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 9","pages":"1019-1029"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic micrometer flower bloom: Quercetin electrochemical sensing platform constructed from CuO-C/NiCo2O4 composite material\",\"authors\":\"Yalai Cen, Yuelan Fang, Xiaokun Li\",\"doi\":\"10.1002/jccs.70056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The pharmacological, biological, and biochemical properties of quercetin hold significant implications in the realms of medicinal chemistry, biochemistry, and clinical medicine. In this study, metal–organic framework (Cu-MOF), nickel nitrate, and cobalt nitrate were used as raw materials, and metal-oxide (CuO-C/NiCo<sub>2</sub>O<sub>4</sub>) composites containing carbonaceous and floral structures were prepared by annealing and co-precipitation techniques. The CuO-C/NiCo<sub>2</sub>O<sub>4</sub>/GCE composite electrode was acquired by embellishing CuO-C/NiCo<sub>2</sub>O<sub>4</sub> on polished glassy carbon electrodes (GCE) using dropwise coating. The synthesized CuO-C/NiCo<sub>2</sub>O<sub>4</sub> was investigated through: (i) scanning electron microscopy (SEM) imaging for morphological evaluation, (ii) X-ray diffraction (XRD) for phase identification, and (iii) X-ray photoelectron spectroscopy (XPS) for elemental state determination. The results revealed that the CuO-C/NiCo₂O₄ composites have a loose and porous surface, an elevated active surface area, high electrical conductivity, and electrocatalytic properties. Based on this result, an electrochemically novel sensor for the detection of quercetin using CuO-C/NiCo₂O₄ composites was developed. The sensor displayed high reproducibility, redox stability, and anti-interference capability in the detection of quercetin. In addition, the peak current measured by this sensor was linearly correlated with the density of quercetin, exhibiting a wide linearity response from 0.1 to 20 μM with an ultralow detection limit of 0.092 μM. These advantages originate in the synergy between CuO-C and NiCo<sub>2</sub>O<sub>4</sub>. Currently, the constructed electrochemical sensor has been successfully employed for the determination of quercetin content in ginkgo biloba leaf.</p>\",\"PeriodicalId\":17262,\"journal\":{\"name\":\"Journal of The Chinese Chemical Society\",\"volume\":\"72 9\",\"pages\":\"1019-1029\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Chinese Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jccs.70056\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.70056","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synergistic micrometer flower bloom: Quercetin electrochemical sensing platform constructed from CuO-C/NiCo2O4 composite material
The pharmacological, biological, and biochemical properties of quercetin hold significant implications in the realms of medicinal chemistry, biochemistry, and clinical medicine. In this study, metal–organic framework (Cu-MOF), nickel nitrate, and cobalt nitrate were used as raw materials, and metal-oxide (CuO-C/NiCo2O4) composites containing carbonaceous and floral structures were prepared by annealing and co-precipitation techniques. The CuO-C/NiCo2O4/GCE composite electrode was acquired by embellishing CuO-C/NiCo2O4 on polished glassy carbon electrodes (GCE) using dropwise coating. The synthesized CuO-C/NiCo2O4 was investigated through: (i) scanning electron microscopy (SEM) imaging for morphological evaluation, (ii) X-ray diffraction (XRD) for phase identification, and (iii) X-ray photoelectron spectroscopy (XPS) for elemental state determination. The results revealed that the CuO-C/NiCo₂O₄ composites have a loose and porous surface, an elevated active surface area, high electrical conductivity, and electrocatalytic properties. Based on this result, an electrochemically novel sensor for the detection of quercetin using CuO-C/NiCo₂O₄ composites was developed. The sensor displayed high reproducibility, redox stability, and anti-interference capability in the detection of quercetin. In addition, the peak current measured by this sensor was linearly correlated with the density of quercetin, exhibiting a wide linearity response from 0.1 to 20 μM with an ultralow detection limit of 0.092 μM. These advantages originate in the synergy between CuO-C and NiCo2O4. Currently, the constructed electrochemical sensor has been successfully employed for the determination of quercetin content in ginkgo biloba leaf.
期刊介绍:
The Journal of the Chinese Chemical Society was founded by The Chemical Society Located in Taipei in 1954, and is the oldest general chemistry journal in Taiwan. It is strictly peer-reviewed and welcomes review articles, full papers, notes and communications written in English. The scope of the Journal of the Chinese Chemical Society covers all major areas of chemistry: organic chemistry, inorganic chemistry, analytical chemistry, biochemistry, physical chemistry, and materials science.