多态密度泛函理论:理论、方法与应用

IF 27 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yangyi Lu, Jiali Gao
{"title":"多态密度泛函理论:理论、方法与应用","authors":"Yangyi Lu,&nbsp;Jiali Gao","doi":"10.1002/wcms.70043","DOIUrl":null,"url":null,"abstract":"<p>A quantum theory of density functionals and its applications is presented. By introducing a matrix density <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mfenced>\n <mi>r</mi>\n </mfenced>\n </mrow>\n <annotation>$$ \\mathbf{D}(r) $$</annotation>\n </semantics></math> of rank <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n </mrow>\n <annotation>$$ N $$</annotation>\n </semantics></math> as the fundamental variable, a one-to-one correspondence has been established between <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mfenced>\n <mi>r</mi>\n </mfenced>\n </mrow>\n <annotation>$$ \\mathbf{D}(r) $$</annotation>\n </semantics></math> and the Hamiltonian matrix representing <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n </mrow>\n <annotation>$$ N $$</annotation>\n </semantics></math> electronic states—that is, a matrix density functional <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mfenced>\n <mi>D</mi>\n </mfenced>\n </mrow>\n <annotation>$$ \\mathcal{H}\\left[\\mathbf{D}\\right] $$</annotation>\n </semantics></math>. Moreover, no more than <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>N</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$$ {N}^2 $$</annotation>\n </semantics></math> Slater determinants are sufficient to represent <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mfenced>\n <mi>r</mi>\n </mfenced>\n </mrow>\n <annotation>$$ \\mathbf{D}(r) $$</annotation>\n </semantics></math> exactly, giving rise to the concept of minimal active space (MAS). The use of a MAS naturally leads to the definition of correlation matrix functional <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>E</mi>\n <mi>c</mi>\n </msup>\n <mfenced>\n <mi>D</mi>\n </mfenced>\n </mrow>\n <annotation>$$ {\\mathcal{E}}^c\\left[\\mathbf{D}\\right] $$</annotation>\n </semantics></math>, the multi-state extension of the exchange-correlation functional in Kohn–Sham DFT. Variational minimization of the multistate energy, which is defined as the trace of the Hamiltonian matrix functional, yields the exact energies and densities of the lowest <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n </mrow>\n <annotation>$$ N $$</annotation>\n </semantics></math> eigenstates. A nonorthogonal state interaction (NOSI) algorithm has been developed to optimize the orbitals associated with <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mfenced>\n <mi>r</mi>\n </mfenced>\n </mrow>\n <annotation>$$ \\mathbf{D}(r) $$</annotation>\n </semantics></math> and to approximate the correlation matrix functional. The MSDFT-NOSI method is demonstrated across a range of applications, particularly in cases where KS-DFT and linear-response time-dependent DFT fail, with its accuracy validated through comparison with high-level multiconfigurational wave function theory.</p><p>This article is categorized under:\n\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 5","pages":""},"PeriodicalIF":27.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.70043","citationCount":"0","resultStr":"{\"title\":\"Multistate Density Functional Theory: Theory, Methods, and Applications\",\"authors\":\"Yangyi Lu,&nbsp;Jiali Gao\",\"doi\":\"10.1002/wcms.70043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A quantum theory of density functionals and its applications is presented. By introducing a matrix density <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n <mfenced>\\n <mi>r</mi>\\n </mfenced>\\n </mrow>\\n <annotation>$$ \\\\mathbf{D}(r) $$</annotation>\\n </semantics></math> of rank <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$$ N $$</annotation>\\n </semantics></math> as the fundamental variable, a one-to-one correspondence has been established between <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n <mfenced>\\n <mi>r</mi>\\n </mfenced>\\n </mrow>\\n <annotation>$$ \\\\mathbf{D}(r) $$</annotation>\\n </semantics></math> and the Hamiltonian matrix representing <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$$ N $$</annotation>\\n </semantics></math> electronic states—that is, a matrix density functional <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <mfenced>\\n <mi>D</mi>\\n </mfenced>\\n </mrow>\\n <annotation>$$ \\\\mathcal{H}\\\\left[\\\\mathbf{D}\\\\right] $$</annotation>\\n </semantics></math>. Moreover, no more than <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$$ {N}^2 $$</annotation>\\n </semantics></math> Slater determinants are sufficient to represent <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n <mfenced>\\n <mi>r</mi>\\n </mfenced>\\n </mrow>\\n <annotation>$$ \\\\mathbf{D}(r) $$</annotation>\\n </semantics></math> exactly, giving rise to the concept of minimal active space (MAS). The use of a MAS naturally leads to the definition of correlation matrix functional <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>E</mi>\\n <mi>c</mi>\\n </msup>\\n <mfenced>\\n <mi>D</mi>\\n </mfenced>\\n </mrow>\\n <annotation>$$ {\\\\mathcal{E}}^c\\\\left[\\\\mathbf{D}\\\\right] $$</annotation>\\n </semantics></math>, the multi-state extension of the exchange-correlation functional in Kohn–Sham DFT. Variational minimization of the multistate energy, which is defined as the trace of the Hamiltonian matrix functional, yields the exact energies and densities of the lowest <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$$ N $$</annotation>\\n </semantics></math> eigenstates. A nonorthogonal state interaction (NOSI) algorithm has been developed to optimize the orbitals associated with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n <mfenced>\\n <mi>r</mi>\\n </mfenced>\\n </mrow>\\n <annotation>$$ \\\\mathbf{D}(r) $$</annotation>\\n </semantics></math> and to approximate the correlation matrix functional. The MSDFT-NOSI method is demonstrated across a range of applications, particularly in cases where KS-DFT and linear-response time-dependent DFT fail, with its accuracy validated through comparison with high-level multiconfigurational wave function theory.</p><p>This article is categorized under:\\n\\n </p>\",\"PeriodicalId\":236,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":27.0000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.70043\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://wires.onlinelibrary.wiley.com/doi/10.1002/wcms.70043\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://wires.onlinelibrary.wiley.com/doi/10.1002/wcms.70043","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提出了密度泛函的量子理论及其应用。通过引入N阶矩阵密度D r $$ \mathbf{D}(r) $$$$ N $$作为基本变量,D r $$ \mathbf{D}(r) $$与表示N $$ N $$电子态的哈密顿矩阵之间建立了一一对应关系,即:矩阵密度泛函H D $$ \mathcal{H}\left[\mathbf{D}\right] $$。此外,不超过n2 $$ {N}^2 $$斯莱特行列式足以精确地表示dr $$ \mathbf{D}(r) $$,由此产生了最小活动空间(MAS)的概念。MAS的使用自然导致相关矩阵泛函E c D $$ {\mathcal{E}}^c\left[\mathbf{D}\right] $$的定义,这是Kohn-Sham DFT中交换相关泛函的多状态扩展。多态能量的变分最小化,定义为哈密顿矩阵函数的轨迹,产生最低N个$$ N $$特征态的精确能量和密度。提出了一种非正交态相互作用(NOSI)算法来优化与D r $$ \mathbf{D}(r) $$相关的轨道并近似相关矩阵泛函。MSDFT-NOSI方法在一系列应用中得到了验证,特别是在KS-DFT和线性响应时变DFT失效的情况下,通过与高级多组态波函数理论的比较,验证了其准确性。本文分类如下:
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multistate Density Functional Theory: Theory, Methods, and Applications

Multistate Density Functional Theory: Theory, Methods, and Applications

Multistate Density Functional Theory: Theory, Methods, and Applications

Multistate Density Functional Theory: Theory, Methods, and Applications

A quantum theory of density functionals and its applications is presented. By introducing a matrix density D r $$ \mathbf{D}(r) $$ of rank N $$ N $$ as the fundamental variable, a one-to-one correspondence has been established between D r $$ \mathbf{D}(r) $$ and the Hamiltonian matrix representing N $$ N $$ electronic states—that is, a matrix density functional H D $$ \mathcal{H}\left[\mathbf{D}\right] $$ . Moreover, no more than N 2 $$ {N}^2 $$ Slater determinants are sufficient to represent D r $$ \mathbf{D}(r) $$ exactly, giving rise to the concept of minimal active space (MAS). The use of a MAS naturally leads to the definition of correlation matrix functional E c D $$ {\mathcal{E}}^c\left[\mathbf{D}\right] $$ , the multi-state extension of the exchange-correlation functional in Kohn–Sham DFT. Variational minimization of the multistate energy, which is defined as the trace of the Hamiltonian matrix functional, yields the exact energies and densities of the lowest N $$ N $$ eigenstates. A nonorthogonal state interaction (NOSI) algorithm has been developed to optimize the orbitals associated with D r $$ \mathbf{D}(r) $$ and to approximate the correlation matrix functional. The MSDFT-NOSI method is demonstrated across a range of applications, particularly in cases where KS-DFT and linear-response time-dependent DFT fail, with its accuracy validated through comparison with high-level multiconfigurational wave function theory.

This article is categorized under:

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信