Lianen Qu, Shan Zhao, Ying Zheng, Chen Ye, Zhikao Ren
{"title":"基于多尺度特征提取和时空交互作用的雷达回波预测混合MIM模型","authors":"Lianen Qu, Shan Zhao, Ying Zheng, Chen Ye, Zhikao Ren","doi":"10.1002/met.70090","DOIUrl":null,"url":null,"abstract":"<p>Radar echo maps are essential for precipitation forecasting, providing visual representations of rainfall patterns, including spatial distribution and intensity. To enhance radar echo prediction, this study introduces the MSIM–MIM model, which integrates the MFEF and SIM modules within the MIM framework. The MFEF module utilizes dilated convolutions to capture multi-scale features while maintaining spatial details, improving contextual understanding, and boosting prediction accuracy, all without increasing computational cost. The SIM module employs a gating mechanism to selectively extract and process spatiotemporal context, thereby enhancing the model's ability to represent these patterns. This results in more refined state representations, allowing the MSIM–MIM model to retain and leverage context more effectively, thus reducing prediction errors. Experimental results demonstrate that MSIM–MIM outperforms other spatiotemporal models, achieving lower MSE and MAE in radar echo predictions across multiple datasets.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"32 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/met.70090","citationCount":"0","resultStr":"{\"title\":\"A Hybrid MIM Model for Radar Echo Forecasting With Multi-Scale Feature Extraction and Spatiotemporal Interaction\",\"authors\":\"Lianen Qu, Shan Zhao, Ying Zheng, Chen Ye, Zhikao Ren\",\"doi\":\"10.1002/met.70090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Radar echo maps are essential for precipitation forecasting, providing visual representations of rainfall patterns, including spatial distribution and intensity. To enhance radar echo prediction, this study introduces the MSIM–MIM model, which integrates the MFEF and SIM modules within the MIM framework. The MFEF module utilizes dilated convolutions to capture multi-scale features while maintaining spatial details, improving contextual understanding, and boosting prediction accuracy, all without increasing computational cost. The SIM module employs a gating mechanism to selectively extract and process spatiotemporal context, thereby enhancing the model's ability to represent these patterns. This results in more refined state representations, allowing the MSIM–MIM model to retain and leverage context more effectively, thus reducing prediction errors. Experimental results demonstrate that MSIM–MIM outperforms other spatiotemporal models, achieving lower MSE and MAE in radar echo predictions across multiple datasets.</p>\",\"PeriodicalId\":49825,\"journal\":{\"name\":\"Meteorological Applications\",\"volume\":\"32 5\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/met.70090\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteorological Applications\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://rmets.onlinelibrary.wiley.com/doi/10.1002/met.70090\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://rmets.onlinelibrary.wiley.com/doi/10.1002/met.70090","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
A Hybrid MIM Model for Radar Echo Forecasting With Multi-Scale Feature Extraction and Spatiotemporal Interaction
Radar echo maps are essential for precipitation forecasting, providing visual representations of rainfall patterns, including spatial distribution and intensity. To enhance radar echo prediction, this study introduces the MSIM–MIM model, which integrates the MFEF and SIM modules within the MIM framework. The MFEF module utilizes dilated convolutions to capture multi-scale features while maintaining spatial details, improving contextual understanding, and boosting prediction accuracy, all without increasing computational cost. The SIM module employs a gating mechanism to selectively extract and process spatiotemporal context, thereby enhancing the model's ability to represent these patterns. This results in more refined state representations, allowing the MSIM–MIM model to retain and leverage context more effectively, thus reducing prediction errors. Experimental results demonstrate that MSIM–MIM outperforms other spatiotemporal models, achieving lower MSE and MAE in radar echo predictions across multiple datasets.
期刊介绍:
The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including:
applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits;
forecasting, warning and service delivery techniques and methods;
weather hazards, their analysis and prediction;
performance, verification and value of numerical models and forecasting services;
practical applications of ocean and climate models;
education and training.