基于多尺度特征提取和时空交互作用的雷达回波预测混合MIM模型

IF 2.5 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Lianen Qu, Shan Zhao, Ying Zheng, Chen Ye, Zhikao Ren
{"title":"基于多尺度特征提取和时空交互作用的雷达回波预测混合MIM模型","authors":"Lianen Qu,&nbsp;Shan Zhao,&nbsp;Ying Zheng,&nbsp;Chen Ye,&nbsp;Zhikao Ren","doi":"10.1002/met.70090","DOIUrl":null,"url":null,"abstract":"<p>Radar echo maps are essential for precipitation forecasting, providing visual representations of rainfall patterns, including spatial distribution and intensity. To enhance radar echo prediction, this study introduces the MSIM–MIM model, which integrates the MFEF and SIM modules within the MIM framework. The MFEF module utilizes dilated convolutions to capture multi-scale features while maintaining spatial details, improving contextual understanding, and boosting prediction accuracy, all without increasing computational cost. The SIM module employs a gating mechanism to selectively extract and process spatiotemporal context, thereby enhancing the model's ability to represent these patterns. This results in more refined state representations, allowing the MSIM–MIM model to retain and leverage context more effectively, thus reducing prediction errors. Experimental results demonstrate that MSIM–MIM outperforms other spatiotemporal models, achieving lower MSE and MAE in radar echo predictions across multiple datasets.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"32 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/met.70090","citationCount":"0","resultStr":"{\"title\":\"A Hybrid MIM Model for Radar Echo Forecasting With Multi-Scale Feature Extraction and Spatiotemporal Interaction\",\"authors\":\"Lianen Qu,&nbsp;Shan Zhao,&nbsp;Ying Zheng,&nbsp;Chen Ye,&nbsp;Zhikao Ren\",\"doi\":\"10.1002/met.70090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Radar echo maps are essential for precipitation forecasting, providing visual representations of rainfall patterns, including spatial distribution and intensity. To enhance radar echo prediction, this study introduces the MSIM–MIM model, which integrates the MFEF and SIM modules within the MIM framework. The MFEF module utilizes dilated convolutions to capture multi-scale features while maintaining spatial details, improving contextual understanding, and boosting prediction accuracy, all without increasing computational cost. The SIM module employs a gating mechanism to selectively extract and process spatiotemporal context, thereby enhancing the model's ability to represent these patterns. This results in more refined state representations, allowing the MSIM–MIM model to retain and leverage context more effectively, thus reducing prediction errors. Experimental results demonstrate that MSIM–MIM outperforms other spatiotemporal models, achieving lower MSE and MAE in radar echo predictions across multiple datasets.</p>\",\"PeriodicalId\":49825,\"journal\":{\"name\":\"Meteorological Applications\",\"volume\":\"32 5\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/met.70090\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteorological Applications\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://rmets.onlinelibrary.wiley.com/doi/10.1002/met.70090\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://rmets.onlinelibrary.wiley.com/doi/10.1002/met.70090","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

雷达回波图对降水预报至关重要,它提供了降雨模式的可视化表示,包括空间分布和强度。为了提高雷达回波预测能力,本研究引入了MSIM-MIM模型,该模型将MFEF和SIM模块集成在MIM框架内。MFEF模块利用扩展卷积来捕获多尺度特征,同时保持空间细节,提高上下文理解,提高预测精度,所有这些都不会增加计算成本。SIM模块采用一种门控机制来选择性地提取和处理时空上下文,从而增强模型表示这些模式的能力。这导致更精细的状态表示,允许MSIM-MIM模型更有效地保留和利用上下文,从而减少预测错误。实验结果表明,MSIM-MIM模型优于其他时空模型,在多数据集雷达回波预测中实现了更低的MSE和MAE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Hybrid MIM Model for Radar Echo Forecasting With Multi-Scale Feature Extraction and Spatiotemporal Interaction

A Hybrid MIM Model for Radar Echo Forecasting With Multi-Scale Feature Extraction and Spatiotemporal Interaction

A Hybrid MIM Model for Radar Echo Forecasting With Multi-Scale Feature Extraction and Spatiotemporal Interaction

A Hybrid MIM Model for Radar Echo Forecasting With Multi-Scale Feature Extraction and Spatiotemporal Interaction

Radar echo maps are essential for precipitation forecasting, providing visual representations of rainfall patterns, including spatial distribution and intensity. To enhance radar echo prediction, this study introduces the MSIM–MIM model, which integrates the MFEF and SIM modules within the MIM framework. The MFEF module utilizes dilated convolutions to capture multi-scale features while maintaining spatial details, improving contextual understanding, and boosting prediction accuracy, all without increasing computational cost. The SIM module employs a gating mechanism to selectively extract and process spatiotemporal context, thereby enhancing the model's ability to represent these patterns. This results in more refined state representations, allowing the MSIM–MIM model to retain and leverage context more effectively, thus reducing prediction errors. Experimental results demonstrate that MSIM–MIM outperforms other spatiotemporal models, achieving lower MSE and MAE in radar echo predictions across multiple datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meteorological Applications
Meteorological Applications 地学-气象与大气科学
CiteScore
5.70
自引率
3.70%
发文量
62
审稿时长
>12 weeks
期刊介绍: The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including: applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits; forecasting, warning and service delivery techniques and methods; weather hazards, their analysis and prediction; performance, verification and value of numerical models and forecasting services; practical applications of ocean and climate models; education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信