{"title":"不对称离子动力学及其对火星磁层等离子体边界的影响","authors":"Yihui Song, Haoyu Lu, Jinbin Cao, Shibang Li, Xiaoshu Wu, Jianxuan Wang, Nihan Chen, Yasong Ge, Yuchen Cao, Jianing Zhao","doi":"10.1029/2025JE009283","DOIUrl":null,"url":null,"abstract":"<p>The asymmetry in plasma flow governed by the direction of solar wind motional electric field <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mtext>SW</mtext>\n </msub>\n <mo>=</mo>\n <mo>−</mo>\n <msub>\n <mi>V</mi>\n <mtext>SW</mtext>\n </msub>\n <mo>×</mo>\n <msub>\n <mi>B</mi>\n <mtext>IMF</mtext>\n </msub>\n </mrow>\n <annotation> ${\\boldsymbol{E}}_{\\text{SW}}=-{\\boldsymbol{V}}_{\\text{SW}}\\times {\\boldsymbol{B}}_{\\text{IMF}}$</annotation>\n </semantics></math>, which can be referred to as <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mtext>SW</mtext>\n </msub>\n </mrow>\n <annotation> ${\\boldsymbol{E}}_{\\text{SW}}$</annotation>\n </semantics></math> asymmetry, is one of the most important asymmetries in the Martian plasma environment. In this study, a multifluid magnetohydrodynamic (MHD) model is employed to investigate the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mtext>SW</mtext>\n </msub>\n </mrow>\n <annotation> ${\\boldsymbol{E}}_{\\text{SW}}$</annotation>\n </semantics></math> asymmetry of ion motions on the magnetic pileup boundary (MPB) and inside the magnetosphere. The simulation results indicate a more intense solar wind penetration across the bow shock in the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>+</mo>\n <mi>Z</mi>\n </mrow>\n <mtext>MSE</mtext>\n </msub>\n </mrow>\n <annotation> ${+Z}_{\\text{MSE}}$</annotation>\n </semantics></math> hemisphere, which enhances the pileup of magnetic field lines through the mass loading process and compresses the MPB. The electric fields, especially the motional electric field <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mi>M</mi>\n </msub>\n </mrow>\n <annotation> ${\\boldsymbol{E}}_{\\boldsymbol{M}}$</annotation>\n </semantics></math>, exhibit apparent <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mtext>SW</mtext>\n </msub>\n </mrow>\n <annotation> ${\\boldsymbol{E}}_{\\text{SW}}$</annotation>\n </semantics></math> asymmetries, accelerating solar wind in the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>−</mo>\n <mi>Z</mi>\n </mrow>\n <mtext>MSE</mtext>\n </msub>\n </mrow>\n <annotation> ${-Z}_{\\text{MSE}}$</annotation>\n </semantics></math> hemisphere while decelerating protons in the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>+</mo>\n <mi>Z</mi>\n </mrow>\n <mtext>MSE</mtext>\n </msub>\n </mrow>\n <annotation> ${+Z}_{\\text{MSE}}$</annotation>\n </semantics></math> hemisphere. For planetary ions, the motional electric field accelerates ions upward in the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>+</mo>\n <mi>Z</mi>\n </mrow>\n <mtext>MSE</mtext>\n </msub>\n </mrow>\n <annotation> ${+Z}_{\\text{MSE}}$</annotation>\n </semantics></math> hemisphere while hindering the ion outflow in the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>−</mo>\n <mi>Z</mi>\n </mrow>\n <mtext>MSE</mtext>\n </msub>\n </mrow>\n <annotation> ${-Z}_{\\text{MSE}}$</annotation>\n </semantics></math> hemisphere, resulting in the energetic ion plume. In the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>+</mo>\n <mi>Z</mi>\n </mrow>\n <mtext>MSE</mtext>\n </msub>\n </mrow>\n <annotation> ${+Z}_{\\text{MSE}}$</annotation>\n </semantics></math> hemisphere, planetary ions also experience more intense horizontal accelerations exerted by the electric fields, with the horizontal transport direction mainly controlled by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mi>M</mi>\n </msub>\n </mrow>\n <annotation> ${\\boldsymbol{E}}_{\\boldsymbol{M}}$</annotation>\n </semantics></math> direction. North-South asymmetries exist in the morphology of electric fields and solar wind deflection, which is primarily due to the crustal field. The Hall electric field and ambipolar electric field are higher in the southern hemisphere, applying a strong deflection to the solar wind. By comparison, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mtext>SW</mtext>\n </msub>\n </mrow>\n <annotation> ${\\boldsymbol{E}}_{\\text{SW}}$</annotation>\n </semantics></math> asymmetry is more significant in affecting proton motions near the MPB, while the MPB asymmetry is dominated by the crustal field.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetrical Ion Dynamics and Its Impact on Plasma Boundaries in the Martian Magnetosphere\",\"authors\":\"Yihui Song, Haoyu Lu, Jinbin Cao, Shibang Li, Xiaoshu Wu, Jianxuan Wang, Nihan Chen, Yasong Ge, Yuchen Cao, Jianing Zhao\",\"doi\":\"10.1029/2025JE009283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The asymmetry in plasma flow governed by the direction of solar wind motional electric field <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mtext>SW</mtext>\\n </msub>\\n <mo>=</mo>\\n <mo>−</mo>\\n <msub>\\n <mi>V</mi>\\n <mtext>SW</mtext>\\n </msub>\\n <mo>×</mo>\\n <msub>\\n <mi>B</mi>\\n <mtext>IMF</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\boldsymbol{E}}_{\\\\text{SW}}=-{\\\\boldsymbol{V}}_{\\\\text{SW}}\\\\times {\\\\boldsymbol{B}}_{\\\\text{IMF}}$</annotation>\\n </semantics></math>, which can be referred to as <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mtext>SW</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\boldsymbol{E}}_{\\\\text{SW}}$</annotation>\\n </semantics></math> asymmetry, is one of the most important asymmetries in the Martian plasma environment. In this study, a multifluid magnetohydrodynamic (MHD) model is employed to investigate the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mtext>SW</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\boldsymbol{E}}_{\\\\text{SW}}$</annotation>\\n </semantics></math> asymmetry of ion motions on the magnetic pileup boundary (MPB) and inside the magnetosphere. The simulation results indicate a more intense solar wind penetration across the bow shock in the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo>+</mo>\\n <mi>Z</mi>\\n </mrow>\\n <mtext>MSE</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${+Z}_{\\\\text{MSE}}$</annotation>\\n </semantics></math> hemisphere, which enhances the pileup of magnetic field lines through the mass loading process and compresses the MPB. The electric fields, especially the motional electric field <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mi>M</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\boldsymbol{E}}_{\\\\boldsymbol{M}}$</annotation>\\n </semantics></math>, exhibit apparent <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mtext>SW</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\boldsymbol{E}}_{\\\\text{SW}}$</annotation>\\n </semantics></math> asymmetries, accelerating solar wind in the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo>−</mo>\\n <mi>Z</mi>\\n </mrow>\\n <mtext>MSE</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${-Z}_{\\\\text{MSE}}$</annotation>\\n </semantics></math> hemisphere while decelerating protons in the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo>+</mo>\\n <mi>Z</mi>\\n </mrow>\\n <mtext>MSE</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${+Z}_{\\\\text{MSE}}$</annotation>\\n </semantics></math> hemisphere. For planetary ions, the motional electric field accelerates ions upward in the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo>+</mo>\\n <mi>Z</mi>\\n </mrow>\\n <mtext>MSE</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${+Z}_{\\\\text{MSE}}$</annotation>\\n </semantics></math> hemisphere while hindering the ion outflow in the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo>−</mo>\\n <mi>Z</mi>\\n </mrow>\\n <mtext>MSE</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${-Z}_{\\\\text{MSE}}$</annotation>\\n </semantics></math> hemisphere, resulting in the energetic ion plume. In the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo>+</mo>\\n <mi>Z</mi>\\n </mrow>\\n <mtext>MSE</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${+Z}_{\\\\text{MSE}}$</annotation>\\n </semantics></math> hemisphere, planetary ions also experience more intense horizontal accelerations exerted by the electric fields, with the horizontal transport direction mainly controlled by <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mi>M</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\boldsymbol{E}}_{\\\\boldsymbol{M}}$</annotation>\\n </semantics></math> direction. North-South asymmetries exist in the morphology of electric fields and solar wind deflection, which is primarily due to the crustal field. The Hall electric field and ambipolar electric field are higher in the southern hemisphere, applying a strong deflection to the solar wind. By comparison, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mtext>SW</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\boldsymbol{E}}_{\\\\text{SW}}$</annotation>\\n </semantics></math> asymmetry is more significant in affecting proton motions near the MPB, while the MPB asymmetry is dominated by the crustal field.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"130 9\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JE009283\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JE009283","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
太阳风运动电场方向E SW =−V SW × B IMF控制等离子体流动的不对称性${\boldsymbol{E}}_{\text{SW}}=-{\boldsymbol{V}}_{\text{SW}}\乘以{\boldsymbol{B}}_{\text{IMF}}$,可称为E SW ${\boldsymbol{E}}_{\text{SW}}$不对称,是火星等离子体环境中最重要的不对称之一。本文采用多流体磁流体动力学(MHD)模型研究了磁堆积边界(MPB)和磁层内部离子运动的不对称性。模拟结果表明,在+Z MSE ${+Z}_{\text{MSE}}$半球,太阳风穿透弓形激波的强度更大,通过质量加载过程增强了磁力线的堆积,压缩了MPB。电场,特别是运动电场E M ${\boldsymbol{E}}_{\boldsymbol{M}}$,表现出明显的E SW ${\boldsymbol{E}}_{\text{SW}}$的不对称性;在-Z MSE ${-Z}_{\text{MSE}}$半球加速太阳风,同时在+ Z MSE中减速质子$ {+ Z} _ {{MSE \文本 }}$ 半球。对于行星离子,运动电场加速了+Z MSE ${+Z}_{\text{MSE}}$半球的离子向上运动,同时阻碍了−Z半球的离子外流MSE ${-Z}_{\text{MSE}}$半球,导致高能离子羽流。在+Z MSE ${+Z}_{\text{MSE}}$半球,行星离子也受到电场施加的更强的水平加速度,水平输运方向主要由E M ${\boldsymbol{E}}_{\boldsymbol{M}}$方向控制。电场形态和太阳风偏转存在南北不对称性,这主要是由地壳场引起的。霍尔电场和双极电场在南半球更高,对太阳风施加了强烈的偏转。相比之下,E SW ${\boldsymbol{E}}_{\text{SW}}$不对称性对MPB附近质子运动的影响更为显著,而MPB的不对称性主要受地壳场的影响。
Asymmetrical Ion Dynamics and Its Impact on Plasma Boundaries in the Martian Magnetosphere
The asymmetry in plasma flow governed by the direction of solar wind motional electric field , which can be referred to as asymmetry, is one of the most important asymmetries in the Martian plasma environment. In this study, a multifluid magnetohydrodynamic (MHD) model is employed to investigate the asymmetry of ion motions on the magnetic pileup boundary (MPB) and inside the magnetosphere. The simulation results indicate a more intense solar wind penetration across the bow shock in the hemisphere, which enhances the pileup of magnetic field lines through the mass loading process and compresses the MPB. The electric fields, especially the motional electric field , exhibit apparent asymmetries, accelerating solar wind in the hemisphere while decelerating protons in the hemisphere. For planetary ions, the motional electric field accelerates ions upward in the hemisphere while hindering the ion outflow in the hemisphere, resulting in the energetic ion plume. In the hemisphere, planetary ions also experience more intense horizontal accelerations exerted by the electric fields, with the horizontal transport direction mainly controlled by direction. North-South asymmetries exist in the morphology of electric fields and solar wind deflection, which is primarily due to the crustal field. The Hall electric field and ambipolar electric field are higher in the southern hemisphere, applying a strong deflection to the solar wind. By comparison, asymmetry is more significant in affecting proton motions near the MPB, while the MPB asymmetry is dominated by the crustal field.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.