跟踪周期信号的自适应安全控制系统的性能增强

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Lijun Liu, Dongxu Gao, Zhen Yu, Shihan Liu
{"title":"跟踪周期信号的自适应安全控制系统的性能增强","authors":"Lijun Liu,&nbsp;Dongxu Gao,&nbsp;Zhen Yu,&nbsp;Shihan Liu","doi":"10.1002/rnc.8044","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper presents an adaptive safe repetitive control approach to improve the tracking performance for periodic reference signals in a class of controlled plants with state constraints and unknown parameters. First, a parameter estimation error extraction mechanism under persistent excitation conditions is employed. Next, an internal model of periodic reference signals, that is, a repetitive controller, is embedded into the reference model to enhance the capability of tracking control. Meanwhile, a new parameter update law based on estimation error is derived to approximate the parametric uncertainty, which enables the error signals in the adaptive control to converge exponentially to zero. Subsequently, an adaptive control barrier function is formulated using quadratic programming to handle state constraints. Safety criteria and error convergence conditions for the controller parameters are provided. Finally, numerical simulations demonstrate the effectiveness, and a comparison of the tracking performance of this method, conventional adaptive control, and other control methods highlights its superiority.</p>\n </div>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"35 14","pages":"6125-6136"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Enhancement for Adaptive Safe Control Systems Tracking Periodic Signals\",\"authors\":\"Lijun Liu,&nbsp;Dongxu Gao,&nbsp;Zhen Yu,&nbsp;Shihan Liu\",\"doi\":\"10.1002/rnc.8044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This paper presents an adaptive safe repetitive control approach to improve the tracking performance for periodic reference signals in a class of controlled plants with state constraints and unknown parameters. First, a parameter estimation error extraction mechanism under persistent excitation conditions is employed. Next, an internal model of periodic reference signals, that is, a repetitive controller, is embedded into the reference model to enhance the capability of tracking control. Meanwhile, a new parameter update law based on estimation error is derived to approximate the parametric uncertainty, which enables the error signals in the adaptive control to converge exponentially to zero. Subsequently, an adaptive control barrier function is formulated using quadratic programming to handle state constraints. Safety criteria and error convergence conditions for the controller parameters are provided. Finally, numerical simulations demonstrate the effectiveness, and a comparison of the tracking performance of this method, conventional adaptive control, and other control methods highlights its superiority.</p>\\n </div>\",\"PeriodicalId\":50291,\"journal\":{\"name\":\"International Journal of Robust and Nonlinear Control\",\"volume\":\"35 14\",\"pages\":\"6125-6136\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robust and Nonlinear Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rnc.8044\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.8044","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对一类状态约束和参数未知的被控对象,提出了一种改进周期参考信号跟踪性能的自适应安全重复控制方法。首先,采用持续激励条件下的参数估计误差提取机制。其次,在参考模型中嵌入周期参考信号的内部模型,即重复控制器,以增强跟踪控制的能力。同时,推导了一种新的基于估计误差的参数更新规律来逼近参数不确定性,使自适应控制中的误差信号指数收敛到零。随后,利用二次规划构造了自适应控制障碍函数来处理状态约束。给出了控制器参数的安全准则和误差收敛条件。最后,通过数值仿真验证了该方法的有效性,并将该方法与传统自适应控制和其他控制方法的跟踪性能进行了比较,突出了其优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Enhancement for Adaptive Safe Control Systems Tracking Periodic Signals

This paper presents an adaptive safe repetitive control approach to improve the tracking performance for periodic reference signals in a class of controlled plants with state constraints and unknown parameters. First, a parameter estimation error extraction mechanism under persistent excitation conditions is employed. Next, an internal model of periodic reference signals, that is, a repetitive controller, is embedded into the reference model to enhance the capability of tracking control. Meanwhile, a new parameter update law based on estimation error is derived to approximate the parametric uncertainty, which enables the error signals in the adaptive control to converge exponentially to zero. Subsequently, an adaptive control barrier function is formulated using quadratic programming to handle state constraints. Safety criteria and error convergence conditions for the controller parameters are provided. Finally, numerical simulations demonstrate the effectiveness, and a comparison of the tracking performance of this method, conventional adaptive control, and other control methods highlights its superiority.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信