聚乙二醇(PEG)动态粘度评估:敏感性分析和基于人工智能的建模

IF 1.6 4区 工程技术 Q3 POLYMER SCIENCE
Juan Li, Soud Khalil Ibrahim, Ramdevsinh Jhala, Anupam Yadav, Ramachandran T, Aman Shankhyan, Karthikeyan A, Dhirendra Nath Thatoi, Rafid Jihad Albadr, Waam Mohammed Taher, Mariem Alwan, Mahmood Jasem Jawad, Hiba Mushtaq, Samim Sherzod, Aseel Smerat
{"title":"聚乙二醇(PEG)动态粘度评估:敏感性分析和基于人工智能的建模","authors":"Juan Li,&nbsp;Soud Khalil Ibrahim,&nbsp;Ramdevsinh Jhala,&nbsp;Anupam Yadav,&nbsp;Ramachandran T,&nbsp;Aman Shankhyan,&nbsp;Karthikeyan A,&nbsp;Dhirendra Nath Thatoi,&nbsp;Rafid Jihad Albadr,&nbsp;Waam Mohammed Taher,&nbsp;Mariem Alwan,&nbsp;Mahmood Jasem Jawad,&nbsp;Hiba Mushtaq,&nbsp;Samim Sherzod,&nbsp;Aseel Smerat","doi":"10.1002/mats.202500032","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this study, the hyperparameters of a gradient boosting decision tree (GBDT) machine learning model are meticulously fine-tuned using four distinct evolutionary optimization approaches: Evolutionary Strategies (ES), Bayesian Probability Improvement (BPI), Batch Bayesian Optimization (BBO), and Self-Adaptive Differential Evolution (SADE) to predict (polyethylene glycol) PEG viscosity. Analysis of the correlation matrix indicates that pressure and molecular weight have influence on dynamic viscosity. Pressure displays a negligible positive correlation (0.17), while molecular weight shows a positive correlation (0.24). On the other hand, temperature exhibits an inverse relationship (−0.75) with dynamic viscosity, establishing it as the most critical factor affecting viscosity. Thus, temperature significantly impacts dynamic viscosity, whereas molecular weight and pressure contribute marginally. These observations are essential for comprehending system behavior and enhancing process efficiency. Among the optimization techniques, SADE outperforms the others, yielding the most accurate GBDT-based hybrid predictive model, as evidenced by performance metrics, including R-squared, mean squared error (MSE), and average absolute relative error (AARE). Despite its extended runtime, SADE's exceptional precision, reflected in the lowest MSE and AARE. Sensitivity analysis confirms that all input variables affect the target parameter, with SHapley Additive exPlanations (SHAP) analysis highlighting temperature as a dominant factor influencing PEG viscosity.</p>\n </div>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"34 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing Dynamic Viscosity of Polyethylene Glycol (PEG): Sensitivity Analysis and AI-Based Modeling\",\"authors\":\"Juan Li,&nbsp;Soud Khalil Ibrahim,&nbsp;Ramdevsinh Jhala,&nbsp;Anupam Yadav,&nbsp;Ramachandran T,&nbsp;Aman Shankhyan,&nbsp;Karthikeyan A,&nbsp;Dhirendra Nath Thatoi,&nbsp;Rafid Jihad Albadr,&nbsp;Waam Mohammed Taher,&nbsp;Mariem Alwan,&nbsp;Mahmood Jasem Jawad,&nbsp;Hiba Mushtaq,&nbsp;Samim Sherzod,&nbsp;Aseel Smerat\",\"doi\":\"10.1002/mats.202500032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this study, the hyperparameters of a gradient boosting decision tree (GBDT) machine learning model are meticulously fine-tuned using four distinct evolutionary optimization approaches: Evolutionary Strategies (ES), Bayesian Probability Improvement (BPI), Batch Bayesian Optimization (BBO), and Self-Adaptive Differential Evolution (SADE) to predict (polyethylene glycol) PEG viscosity. Analysis of the correlation matrix indicates that pressure and molecular weight have influence on dynamic viscosity. Pressure displays a negligible positive correlation (0.17), while molecular weight shows a positive correlation (0.24). On the other hand, temperature exhibits an inverse relationship (−0.75) with dynamic viscosity, establishing it as the most critical factor affecting viscosity. Thus, temperature significantly impacts dynamic viscosity, whereas molecular weight and pressure contribute marginally. These observations are essential for comprehending system behavior and enhancing process efficiency. Among the optimization techniques, SADE outperforms the others, yielding the most accurate GBDT-based hybrid predictive model, as evidenced by performance metrics, including R-squared, mean squared error (MSE), and average absolute relative error (AARE). Despite its extended runtime, SADE's exceptional precision, reflected in the lowest MSE and AARE. Sensitivity analysis confirms that all input variables affect the target parameter, with SHapley Additive exPlanations (SHAP) analysis highlighting temperature as a dominant factor influencing PEG viscosity.</p>\\n </div>\",\"PeriodicalId\":18157,\"journal\":{\"name\":\"Macromolecular Theory and Simulations\",\"volume\":\"34 5\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mats.202500032\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202500032","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,使用四种不同的进化优化方法对梯度增强决策树(GBDT)机器学习模型的超参数进行了精心微调:进化策略(ES)、贝叶斯概率改进(BPI)、批处理贝叶斯优化(BBO)和自适应差分进化(SADE)来预测聚乙二醇(PEG)粘度。相关矩阵分析表明,压力和分子量对动态粘度有影响。压力的正相关(0.17)可忽略不计,而分子量的正相关(0.24)。另一方面,温度与动态粘度呈负相关(- 0.75),是影响粘度的最关键因素。因此,温度对动态粘度有显著影响,而分子量和压力的影响微乎其微。这些观察对于理解系统行为和提高过程效率是必不可少的。在优化技术中,SADE优于其他技术,产生了最准确的基于gbdt的混合预测模型,性能指标包括r平方、均方误差(MSE)和平均绝对相对误差(AARE)。尽管它的运行时间很长,但SADE的异常精度反映在最低的MSE和AARE上。敏感性分析证实,所有输入变量都会影响目标参数,SHapley加性解释(SHAP)分析强调温度是影响PEG粘度的主要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing Dynamic Viscosity of Polyethylene Glycol (PEG): Sensitivity Analysis and AI-Based Modeling

In this study, the hyperparameters of a gradient boosting decision tree (GBDT) machine learning model are meticulously fine-tuned using four distinct evolutionary optimization approaches: Evolutionary Strategies (ES), Bayesian Probability Improvement (BPI), Batch Bayesian Optimization (BBO), and Self-Adaptive Differential Evolution (SADE) to predict (polyethylene glycol) PEG viscosity. Analysis of the correlation matrix indicates that pressure and molecular weight have influence on dynamic viscosity. Pressure displays a negligible positive correlation (0.17), while molecular weight shows a positive correlation (0.24). On the other hand, temperature exhibits an inverse relationship (−0.75) with dynamic viscosity, establishing it as the most critical factor affecting viscosity. Thus, temperature significantly impacts dynamic viscosity, whereas molecular weight and pressure contribute marginally. These observations are essential for comprehending system behavior and enhancing process efficiency. Among the optimization techniques, SADE outperforms the others, yielding the most accurate GBDT-based hybrid predictive model, as evidenced by performance metrics, including R-squared, mean squared error (MSE), and average absolute relative error (AARE). Despite its extended runtime, SADE's exceptional precision, reflected in the lowest MSE and AARE. Sensitivity analysis confirms that all input variables affect the target parameter, with SHapley Additive exPlanations (SHAP) analysis highlighting temperature as a dominant factor influencing PEG viscosity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信