非零边界条件下局部非线性与非局部非线性离焦非线性Schrödinger方程的逆散射变换

IF 1.4 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Chuanxin Xu, Tao Xu, Min Li
{"title":"非零边界条件下局部非线性与非局部非线性离焦非线性Schrödinger方程的逆散射变换","authors":"Chuanxin Xu,&nbsp;Tao Xu,&nbsp;Min Li","doi":"10.1007/s11005-025-01993-2","DOIUrl":null,"url":null,"abstract":"<div><p>Within the framework of the Riemann–Hilbert problem, the theory of inverse scattering transform is established for the defocusing nonlinear Schrödinger equation with local and nonlocal nonlinearities (which originates from the parity-symmetric reduction of the Manakov system) under nonzero boundary conditions. First, the adjoint Lax pair and auxiliary eigenfunctions are introduced for the direct scattering, and the analyticity, symmetries of eigenfunctions and scattering matrix are studied in detail. Then, the distribution of discrete eigenvalues is examined, and the asymptotic behaviors of the eigenfunctions and scattering coefficients are analyzed rigorously. Compared with the Manakov system, the reverse-space nonlocality introduces an additional symmetry, leading to stricter constraints on eigenfunctions, scattering coefficients and norming constants. Further, the Riemann–Hilbert problem is formulated for the inverse problem with the scattering coefficients admitting an arbitrary number of simple zeros. For the reflectionless case, the <i>N</i>-soliton solutions are presented in the determinant form. With <i>N</i> = 1, the dark and beating one-soliton solutions are obtained, which are, respectively, associated with a pair of discrete eigenvalues lying on and off the circle on the spectrum plane. Via the asymptotic analysis, the two-soliton solutions are found to admit the interactions between two dark solitons or two beating solitons, as well as the superpositions of two beating solitons or one beating soliton and one dark soliton.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse scattering transform for the defocusing nonlinear Schrödinger equation with local and nonlocal nonlinearities under nonzero boundary conditions\",\"authors\":\"Chuanxin Xu,&nbsp;Tao Xu,&nbsp;Min Li\",\"doi\":\"10.1007/s11005-025-01993-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Within the framework of the Riemann–Hilbert problem, the theory of inverse scattering transform is established for the defocusing nonlinear Schrödinger equation with local and nonlocal nonlinearities (which originates from the parity-symmetric reduction of the Manakov system) under nonzero boundary conditions. First, the adjoint Lax pair and auxiliary eigenfunctions are introduced for the direct scattering, and the analyticity, symmetries of eigenfunctions and scattering matrix are studied in detail. Then, the distribution of discrete eigenvalues is examined, and the asymptotic behaviors of the eigenfunctions and scattering coefficients are analyzed rigorously. Compared with the Manakov system, the reverse-space nonlocality introduces an additional symmetry, leading to stricter constraints on eigenfunctions, scattering coefficients and norming constants. Further, the Riemann–Hilbert problem is formulated for the inverse problem with the scattering coefficients admitting an arbitrary number of simple zeros. For the reflectionless case, the <i>N</i>-soliton solutions are presented in the determinant form. With <i>N</i> = 1, the dark and beating one-soliton solutions are obtained, which are, respectively, associated with a pair of discrete eigenvalues lying on and off the circle on the spectrum plane. Via the asymptotic analysis, the two-soliton solutions are found to admit the interactions between two dark solitons or two beating solitons, as well as the superpositions of two beating solitons or one beating soliton and one dark soliton.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 5\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01993-2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01993-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在Riemann-Hilbert问题的框架下,建立了非零边界条件下具有局部和非局部非线性(源于Manakov系统的奇偶对称约简)的散焦非线性Schrödinger方程的逆散射变换理论。首先,引入了直接散射的伴随Lax对和辅助特征函数,并详细研究了特征函数和散射矩阵的解析性、对称性。然后,研究了离散特征值的分布,并严格分析了特征函数和散射系数的渐近行为。与Manakov系统相比,逆空间非定域性引入了额外的对称性,从而导致对特征函数、散射系数和赋范常数的更严格约束。进一步,推导出了黎曼-希尔伯特问题的逆问题,其中散射系数允许有任意数量的简单零。对于无反射情况,n孤子解以行列式形式给出。当N = 1时,得到暗单孤子解和跳动单孤子解,它们分别与光谱平面上圆上和圆外的一对离散特征值相关联。通过渐近分析,发现双孤子解承认两个暗孤子或两个跳动孤子之间的相互作用,以及两个跳动孤子或一个跳动孤子与一个暗孤子的叠加态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inverse scattering transform for the defocusing nonlinear Schrödinger equation with local and nonlocal nonlinearities under nonzero boundary conditions

Inverse scattering transform for the defocusing nonlinear Schrödinger equation with local and nonlocal nonlinearities under nonzero boundary conditions

Inverse scattering transform for the defocusing nonlinear Schrödinger equation with local and nonlocal nonlinearities under nonzero boundary conditions

Within the framework of the Riemann–Hilbert problem, the theory of inverse scattering transform is established for the defocusing nonlinear Schrödinger equation with local and nonlocal nonlinearities (which originates from the parity-symmetric reduction of the Manakov system) under nonzero boundary conditions. First, the adjoint Lax pair and auxiliary eigenfunctions are introduced for the direct scattering, and the analyticity, symmetries of eigenfunctions and scattering matrix are studied in detail. Then, the distribution of discrete eigenvalues is examined, and the asymptotic behaviors of the eigenfunctions and scattering coefficients are analyzed rigorously. Compared with the Manakov system, the reverse-space nonlocality introduces an additional symmetry, leading to stricter constraints on eigenfunctions, scattering coefficients and norming constants. Further, the Riemann–Hilbert problem is formulated for the inverse problem with the scattering coefficients admitting an arbitrary number of simple zeros. For the reflectionless case, the N-soliton solutions are presented in the determinant form. With N = 1, the dark and beating one-soliton solutions are obtained, which are, respectively, associated with a pair of discrete eigenvalues lying on and off the circle on the spectrum plane. Via the asymptotic analysis, the two-soliton solutions are found to admit the interactions between two dark solitons or two beating solitons, as well as the superpositions of two beating solitons or one beating soliton and one dark soliton.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信