{"title":"非零边界条件下局部非线性与非局部非线性离焦非线性Schrödinger方程的逆散射变换","authors":"Chuanxin Xu, Tao Xu, Min Li","doi":"10.1007/s11005-025-01993-2","DOIUrl":null,"url":null,"abstract":"<div><p>Within the framework of the Riemann–Hilbert problem, the theory of inverse scattering transform is established for the defocusing nonlinear Schrödinger equation with local and nonlocal nonlinearities (which originates from the parity-symmetric reduction of the Manakov system) under nonzero boundary conditions. First, the adjoint Lax pair and auxiliary eigenfunctions are introduced for the direct scattering, and the analyticity, symmetries of eigenfunctions and scattering matrix are studied in detail. Then, the distribution of discrete eigenvalues is examined, and the asymptotic behaviors of the eigenfunctions and scattering coefficients are analyzed rigorously. Compared with the Manakov system, the reverse-space nonlocality introduces an additional symmetry, leading to stricter constraints on eigenfunctions, scattering coefficients and norming constants. Further, the Riemann–Hilbert problem is formulated for the inverse problem with the scattering coefficients admitting an arbitrary number of simple zeros. For the reflectionless case, the <i>N</i>-soliton solutions are presented in the determinant form. With <i>N</i> = 1, the dark and beating one-soliton solutions are obtained, which are, respectively, associated with a pair of discrete eigenvalues lying on and off the circle on the spectrum plane. Via the asymptotic analysis, the two-soliton solutions are found to admit the interactions between two dark solitons or two beating solitons, as well as the superpositions of two beating solitons or one beating soliton and one dark soliton.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse scattering transform for the defocusing nonlinear Schrödinger equation with local and nonlocal nonlinearities under nonzero boundary conditions\",\"authors\":\"Chuanxin Xu, Tao Xu, Min Li\",\"doi\":\"10.1007/s11005-025-01993-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Within the framework of the Riemann–Hilbert problem, the theory of inverse scattering transform is established for the defocusing nonlinear Schrödinger equation with local and nonlocal nonlinearities (which originates from the parity-symmetric reduction of the Manakov system) under nonzero boundary conditions. First, the adjoint Lax pair and auxiliary eigenfunctions are introduced for the direct scattering, and the analyticity, symmetries of eigenfunctions and scattering matrix are studied in detail. Then, the distribution of discrete eigenvalues is examined, and the asymptotic behaviors of the eigenfunctions and scattering coefficients are analyzed rigorously. Compared with the Manakov system, the reverse-space nonlocality introduces an additional symmetry, leading to stricter constraints on eigenfunctions, scattering coefficients and norming constants. Further, the Riemann–Hilbert problem is formulated for the inverse problem with the scattering coefficients admitting an arbitrary number of simple zeros. For the reflectionless case, the <i>N</i>-soliton solutions are presented in the determinant form. With <i>N</i> = 1, the dark and beating one-soliton solutions are obtained, which are, respectively, associated with a pair of discrete eigenvalues lying on and off the circle on the spectrum plane. Via the asymptotic analysis, the two-soliton solutions are found to admit the interactions between two dark solitons or two beating solitons, as well as the superpositions of two beating solitons or one beating soliton and one dark soliton.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 5\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01993-2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01993-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Inverse scattering transform for the defocusing nonlinear Schrödinger equation with local and nonlocal nonlinearities under nonzero boundary conditions
Within the framework of the Riemann–Hilbert problem, the theory of inverse scattering transform is established for the defocusing nonlinear Schrödinger equation with local and nonlocal nonlinearities (which originates from the parity-symmetric reduction of the Manakov system) under nonzero boundary conditions. First, the adjoint Lax pair and auxiliary eigenfunctions are introduced for the direct scattering, and the analyticity, symmetries of eigenfunctions and scattering matrix are studied in detail. Then, the distribution of discrete eigenvalues is examined, and the asymptotic behaviors of the eigenfunctions and scattering coefficients are analyzed rigorously. Compared with the Manakov system, the reverse-space nonlocality introduces an additional symmetry, leading to stricter constraints on eigenfunctions, scattering coefficients and norming constants. Further, the Riemann–Hilbert problem is formulated for the inverse problem with the scattering coefficients admitting an arbitrary number of simple zeros. For the reflectionless case, the N-soliton solutions are presented in the determinant form. With N = 1, the dark and beating one-soliton solutions are obtained, which are, respectively, associated with a pair of discrete eigenvalues lying on and off the circle on the spectrum plane. Via the asymptotic analysis, the two-soliton solutions are found to admit the interactions between two dark solitons or two beating solitons, as well as the superpositions of two beating solitons or one beating soliton and one dark soliton.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.