空间中Dunkl变换的boas型定理 \(L^{1}_{k}(R^{d},w_{k}(x)dx)\)

Q2 Mathematics
A. Mahfoud, M. El Hamma
{"title":"空间中Dunkl变换的boas型定理 \\(L^{1}_{k}(R^{d},w_{k}(x)dx)\\)","authors":"A. Mahfoud,&nbsp;M. El Hamma","doi":"10.1007/s11565-025-00612-1","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of the present work is to study the necessary and sufficient condition in terms of the Dunkl transform <span>\\({\\mathcal {F}}_{k}(f)\\)</span> on <span>\\({{\\mathbb {R}}}^{d}\\)</span>, to ensure that <i>f</i> belong either to one of the generalized Lipschitz classes <span>\\(D_{\\alpha }^{m}\\)</span> and <span>\\(d_{\\alpha }^{m}\\)</span> for <span>\\(\\alpha &gt;0\\)</span>.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boas-type theorems for the Dunkl transform in the space \\\\(L^{1}_{k}(R^{d},w_{k}(x)dx)\\\\)\",\"authors\":\"A. Mahfoud,&nbsp;M. El Hamma\",\"doi\":\"10.1007/s11565-025-00612-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of the present work is to study the necessary and sufficient condition in terms of the Dunkl transform <span>\\\\({\\\\mathcal {F}}_{k}(f)\\\\)</span> on <span>\\\\({{\\\\mathbb {R}}}^{d}\\\\)</span>, to ensure that <i>f</i> belong either to one of the generalized Lipschitz classes <span>\\\\(D_{\\\\alpha }^{m}\\\\)</span> and <span>\\\\(d_{\\\\alpha }^{m}\\\\)</span> for <span>\\\\(\\\\alpha &gt;0\\\\)</span>.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"71 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-025-00612-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00612-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究\({{\mathbb {R}}}^{d}\)上的Dunkl变换\({\mathcal {F}}_{k}(f)\)的充要条件,以保证f属于\(\alpha >0\)的广义Lipschitz类\(D_{\alpha }^{m}\)和\(d_{\alpha }^{m}\)之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boas-type theorems for the Dunkl transform in the space \(L^{1}_{k}(R^{d},w_{k}(x)dx)\)

The purpose of the present work is to study the necessary and sufficient condition in terms of the Dunkl transform \({\mathcal {F}}_{k}(f)\) on \({{\mathbb {R}}}^{d}\), to ensure that f belong either to one of the generalized Lipschitz classes \(D_{\alpha }^{m}\) and \(d_{\alpha }^{m}\) for \(\alpha >0\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信