{"title":"紧齐次不可约黎曼流形的和规则和尖锐特征值界","authors":"Luigi Provenzano, Joachim Stubbe","doi":"10.1007/s10455-025-10018-z","DOIUrl":null,"url":null,"abstract":"<div><p>We exploit an identity for the gradients of Laplacian eigenfunctions on compact homogeneous Riemannian manifolds with irreducible linear isotropy group to obtain asymptotically sharp universal eigenvalue inequalities and sharp Weyl bounds on Riesz means. The approach is non variational and is based on identities for spectral quantities in the form of sum rules.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"68 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-025-10018-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Sum rules and sharp eigenvalue bounds for compact homogeneous irreducible Riemannian manifolds\",\"authors\":\"Luigi Provenzano, Joachim Stubbe\",\"doi\":\"10.1007/s10455-025-10018-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We exploit an identity for the gradients of Laplacian eigenfunctions on compact homogeneous Riemannian manifolds with irreducible linear isotropy group to obtain asymptotically sharp universal eigenvalue inequalities and sharp Weyl bounds on Riesz means. The approach is non variational and is based on identities for spectral quantities in the form of sum rules.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":\"68 3\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-025-10018-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-025-10018-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-025-10018-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Sum rules and sharp eigenvalue bounds for compact homogeneous irreducible Riemannian manifolds
We exploit an identity for the gradients of Laplacian eigenfunctions on compact homogeneous Riemannian manifolds with irreducible linear isotropy group to obtain asymptotically sharp universal eigenvalue inequalities and sharp Weyl bounds on Riesz means. The approach is non variational and is based on identities for spectral quantities in the form of sum rules.
期刊介绍:
This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field.
The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.