P(n)的非齐次振子表示

IF 0.9 3区 数学 Q2 MATHEMATICS
Ling Chen
{"title":"P(n)的非齐次振子表示","authors":"Ling Chen","doi":"10.1007/s10114-025-3419-8","DOIUrl":null,"url":null,"abstract":"<div><p>We study inhomogeneous oscillator representations of the strange Lie superalgebras <i>P</i>(<i>n</i>) on supersymmetric polynomial algebras and on spaces of supersymmetric exponential-polynomial functions. We obtain the composition series for these representations. The obtained irreducible modules are infinite dimensional. Some of them are not of highest-weight type and even not weight modules.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 7","pages":"1717 - 1752"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhomogeneous Oscillator Representations of P(n)\",\"authors\":\"Ling Chen\",\"doi\":\"10.1007/s10114-025-3419-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study inhomogeneous oscillator representations of the strange Lie superalgebras <i>P</i>(<i>n</i>) on supersymmetric polynomial algebras and on spaces of supersymmetric exponential-polynomial functions. We obtain the composition series for these representations. The obtained irreducible modules are infinite dimensional. Some of them are not of highest-weight type and even not weight modules.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 7\",\"pages\":\"1717 - 1752\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-3419-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3419-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了奇异李超代数P(n)在超对称多项式代数和超对称指数多项式函数空间上的非齐次振子表示。我们得到了这些表示的复合级数。所得到的不可约模是无限维的。其中一些不是最高权重类型,甚至不是权重模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inhomogeneous Oscillator Representations of P(n)

We study inhomogeneous oscillator representations of the strange Lie superalgebras P(n) on supersymmetric polynomial algebras and on spaces of supersymmetric exponential-polynomial functions. We obtain the composition series for these representations. The obtained irreducible modules are infinite dimensional. Some of them are not of highest-weight type and even not weight modules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信