强hn -正性、一致RC - k-正性和有理连通性

IF 0.9 3区 数学 Q2 MATHEMATICS
Yong Chen
{"title":"强hn -正性、一致RC - k-正性和有理连通性","authors":"Yong Chen","doi":"10.1007/s10114-025-3217-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we discuss the concept of HN-semipositive (HN-positive) vector bundle and also introduce strongly HN-semipositive vector bundle over compact complex manifold. Let <i>M</i> be a projective manifold with HN-semipositive tangent bundle. If <i>M</i> is rationally connected, we show that <i>T</i><sup>1,0</sup><i>M</i> is strongly HN-positive. We give a characterization of rationally connected compact Kähler manifolds with strongly HN-semipositive tangent bundle. In the second part, we show that a uniformly RC <i>k</i>-positivity implies mean curvature positivity.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 7","pages":"1906 - 1922"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly HN-Positivity, Uniformly RC k-Positivity and Rational Connectedness\",\"authors\":\"Yong Chen\",\"doi\":\"10.1007/s10114-025-3217-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we discuss the concept of HN-semipositive (HN-positive) vector bundle and also introduce strongly HN-semipositive vector bundle over compact complex manifold. Let <i>M</i> be a projective manifold with HN-semipositive tangent bundle. If <i>M</i> is rationally connected, we show that <i>T</i><sup>1,0</sup><i>M</i> is strongly HN-positive. We give a characterization of rationally connected compact Kähler manifolds with strongly HN-semipositive tangent bundle. In the second part, we show that a uniformly RC <i>k</i>-positivity implies mean curvature positivity.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 7\",\"pages\":\"1906 - 1922\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-3217-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3217-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了紧复流形上的n -半正(n -正)向量束的概念,并引入了强n -半正向量束。设M是一个具有hn -半正切束的投影流形。如果M是理性连接的,我们证明T1,0M是强hn阳性的。给出了具有强hn -半正切束的合理连通紧致Kähler流形的一个性质。在第二部分中,我们证明了一致的RC k正意味着平均曲率正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strongly HN-Positivity, Uniformly RC k-Positivity and Rational Connectedness

In this paper, we discuss the concept of HN-semipositive (HN-positive) vector bundle and also introduce strongly HN-semipositive vector bundle over compact complex manifold. Let M be a projective manifold with HN-semipositive tangent bundle. If M is rationally connected, we show that T1,0M is strongly HN-positive. We give a characterization of rationally connected compact Kähler manifolds with strongly HN-semipositive tangent bundle. In the second part, we show that a uniformly RC k-positivity implies mean curvature positivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信