上三角算子矩阵的超环性和超环性

IF 0.9 3区 数学 Q2 MATHEMATICS
Gaohuizi Feng, Pengtong Li
{"title":"上三角算子矩阵的超环性和超环性","authors":"Gaohuizi Feng,&nbsp;Pengtong Li","doi":"10.1007/s10114-025-3332-1","DOIUrl":null,"url":null,"abstract":"<div><p>An operator <i>T</i> on a complex separable infinite dimensional Hilbert space is hypercyclic if there is a vector <span>\\(y \\in \\cal{H}\\)</span> such that the orbit Orb(<i>T, y</i>) = {<i>y, Ty, T</i><sup>2</sup><i>y, T</i><sup>3</sup><i>y</i>, …} is dense in <span>\\(\\cal{H}\\)</span>. Hypercyclic property and supercyclic proeprty are liable to fail for 2 × 2 upper triangular operator matrices. In this paper, we aim to explore and characterize the hypercyclicity and the supercyclicity for 2 × 2 upper triangular operator matrices. We obtain a spectral characterization of the norm-closure of the class of all hypercyclic (supercyclic) operators for 2 × 2 upper triangular operator matrices.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 7","pages":"1775 - 1788"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypercyclicity and Supercyclicity for Upper Triangular Operator Matrices\",\"authors\":\"Gaohuizi Feng,&nbsp;Pengtong Li\",\"doi\":\"10.1007/s10114-025-3332-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An operator <i>T</i> on a complex separable infinite dimensional Hilbert space is hypercyclic if there is a vector <span>\\\\(y \\\\in \\\\cal{H}\\\\)</span> such that the orbit Orb(<i>T, y</i>) = {<i>y, Ty, T</i><sup>2</sup><i>y, T</i><sup>3</sup><i>y</i>, …} is dense in <span>\\\\(\\\\cal{H}\\\\)</span>. Hypercyclic property and supercyclic proeprty are liable to fail for 2 × 2 upper triangular operator matrices. In this paper, we aim to explore and characterize the hypercyclicity and the supercyclicity for 2 × 2 upper triangular operator matrices. We obtain a spectral characterization of the norm-closure of the class of all hypercyclic (supercyclic) operators for 2 × 2 upper triangular operator matrices.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 7\",\"pages\":\"1775 - 1788\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-3332-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3332-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果存在一个向量\(y \in \cal{H}\),使得轨道Orb(T, y) = y, {Ty, T2y, T3y,…在}\(\cal{H}\)上是稠密的,则复可分无限维希尔伯特空间上的算子T是超循环的。对于2 × 2上三角算子矩阵,超循环性质和超循环性质容易失效。本文研究了2 × 2上三角算子矩阵的超环性和超环性。我们得到了2 × 2上三角算子矩阵的所有超循环算子类的范数闭包的谱表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypercyclicity and Supercyclicity for Upper Triangular Operator Matrices

An operator T on a complex separable infinite dimensional Hilbert space is hypercyclic if there is a vector \(y \in \cal{H}\) such that the orbit Orb(T, y) = {y, Ty, T2y, T3y, …} is dense in \(\cal{H}\). Hypercyclic property and supercyclic proeprty are liable to fail for 2 × 2 upper triangular operator matrices. In this paper, we aim to explore and characterize the hypercyclicity and the supercyclicity for 2 × 2 upper triangular operator matrices. We obtain a spectral characterization of the norm-closure of the class of all hypercyclic (supercyclic) operators for 2 × 2 upper triangular operator matrices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信