一阶微分系统的两种新的四阶显式四阶指数龙格-库塔方法

IF 0.9 3区 数学 Q2 MATHEMATICS
Xianfa Hu, Yonglei Fang, Bin Wang
{"title":"一阶微分系统的两种新的四阶显式四阶指数龙格-库塔方法","authors":"Xianfa Hu,&nbsp;Yonglei Fang,&nbsp;Bin Wang","doi":"10.1007/s10114-025-4348-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we formulate two new families of fourth-order explicit exponential Runge–Kutta (ERK) methods with four stages for solving first-order differential systems <i>y</i>′(<i>t</i>)+ <i>My</i>(<i>t</i>) = <i>f</i>(<i>y</i>(<i>t</i>)). The order conditions of these ERK methods are derived by comparing the Taylor series of the exact solution, which are exactly identical to the order conditions of explicit Runge–Kutta methods, and these ERK methods reduce to classical Runge–Kutta methods once <i>M</i> → 0. Moreover, we analyze the stability properties and the convergence of these new methods. Several numerical examples are implemented to illustrate the accuracy and efficiency of these ERK methods by comparison with standard exponential integrators.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 7","pages":"1923 - 1943"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two New Families of Fourth-Order Explicit Exponential Runge–Kutta Methods with Four Stages for First-Order Differential Systems\",\"authors\":\"Xianfa Hu,&nbsp;Yonglei Fang,&nbsp;Bin Wang\",\"doi\":\"10.1007/s10114-025-4348-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we formulate two new families of fourth-order explicit exponential Runge–Kutta (ERK) methods with four stages for solving first-order differential systems <i>y</i>′(<i>t</i>)+ <i>My</i>(<i>t</i>) = <i>f</i>(<i>y</i>(<i>t</i>)). The order conditions of these ERK methods are derived by comparing the Taylor series of the exact solution, which are exactly identical to the order conditions of explicit Runge–Kutta methods, and these ERK methods reduce to classical Runge–Kutta methods once <i>M</i> → 0. Moreover, we analyze the stability properties and the convergence of these new methods. Several numerical examples are implemented to illustrate the accuracy and efficiency of these ERK methods by comparison with standard exponential integrators.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 7\",\"pages\":\"1923 - 1943\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-4348-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-4348-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了求解一阶微分系统y ' (t)+ My(t) = f(y(t))的两种新的四阶显式指数龙格-库塔(ERK)方法。通过比较精确解的泰勒级数,导出了这些ERK方法的阶条件,其阶条件与显式龙格-库塔方法的阶条件完全相同,并且当M→0时,这些ERK方法归约为经典龙格-库塔方法。此外,我们还分析了这些新方法的稳定性和收敛性。通过与标准指数积分器的比较,说明了ERK方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two New Families of Fourth-Order Explicit Exponential Runge–Kutta Methods with Four Stages for First-Order Differential Systems

In this paper, we formulate two new families of fourth-order explicit exponential Runge–Kutta (ERK) methods with four stages for solving first-order differential systems y′(t)+ My(t) = f(y(t)). The order conditions of these ERK methods are derived by comparing the Taylor series of the exact solution, which are exactly identical to the order conditions of explicit Runge–Kutta methods, and these ERK methods reduce to classical Runge–Kutta methods once M → 0. Moreover, we analyze the stability properties and the convergence of these new methods. Several numerical examples are implemented to illustrate the accuracy and efficiency of these ERK methods by comparison with standard exponential integrators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信