{"title":"了解深度学习的优化机制","authors":"Binchuan Qi, Wei Gong, Li Li","doi":"10.1007/s10489-025-06875-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we adopt a probability distribution estimation perspective to explore the optimization mechanisms of supervised classification using deep neural networks. We demonstrate that, when employing the Fenchel-Young loss, despite the non-convex nature of the fitting error with respect to the model’s parameters, global optimal solutions can be approximated by simultaneously minimizing both the gradient norm and the structural error. The former can be controlled through gradient descent algorithms. For the latter, we prove that it can be managed by increasing the number of parameters and ensuring parameter independence, thereby providing theoretical insights into mechanisms such as overparameterization and random initialization. Ultimately, the paper validates the key conclusions of the proposed method through empirical results, illustrating its practical effectiveness.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 15","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards understanding the optimization mechanisms in deep learning\",\"authors\":\"Binchuan Qi, Wei Gong, Li Li\",\"doi\":\"10.1007/s10489-025-06875-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we adopt a probability distribution estimation perspective to explore the optimization mechanisms of supervised classification using deep neural networks. We demonstrate that, when employing the Fenchel-Young loss, despite the non-convex nature of the fitting error with respect to the model’s parameters, global optimal solutions can be approximated by simultaneously minimizing both the gradient norm and the structural error. The former can be controlled through gradient descent algorithms. For the latter, we prove that it can be managed by increasing the number of parameters and ensuring parameter independence, thereby providing theoretical insights into mechanisms such as overparameterization and random initialization. Ultimately, the paper validates the key conclusions of the proposed method through empirical results, illustrating its practical effectiveness.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 15\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06875-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06875-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Towards understanding the optimization mechanisms in deep learning
In this paper, we adopt a probability distribution estimation perspective to explore the optimization mechanisms of supervised classification using deep neural networks. We demonstrate that, when employing the Fenchel-Young loss, despite the non-convex nature of the fitting error with respect to the model’s parameters, global optimal solutions can be approximated by simultaneously minimizing both the gradient norm and the structural error. The former can be controlled through gradient descent algorithms. For the latter, we prove that it can be managed by increasing the number of parameters and ensuring parameter independence, thereby providing theoretical insights into mechanisms such as overparameterization and random initialization. Ultimately, the paper validates the key conclusions of the proposed method through empirical results, illustrating its practical effectiveness.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.