{"title":"在不同环境中迁移的分支过程达到固定水平的时间","authors":"Huaming Wang","doi":"10.1007/s10114-025-4035-3","DOIUrl":null,"url":null,"abstract":"<div><p>Consider a branching process {<i>Z</i><sub><i>n</i></sub>}<sub><i>n</i>≥0</sub> with immigration in varying environments. For <i>a</i> ∈ {0, 1, 2, …}, let <i>C</i>(<i>a</i>) = {<i>n</i> ≥ 0: <i>Z</i><sub><i>n</i></sub> = <i>a</i>} be the collection of times at which the population size of the process attains level <i>a</i>. We give a criterion to determine whether the set <i>C</i>(<i>a</i>) is finite or not. For the critical Galton–Watson process, based on a moment method, we show that <span>\\({{| {C(a) \\cap [1,n]} |} \\over {\\log \\;n \\to S}}\\)</span> in distribution, where <i>S</i> is an exponentially distributed random variable with <i>P</i>(<i>S</i> > <i>t</i>) = e<sup>−<i>t</i></sup>, <i>t</i> > 0.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 7","pages":"1789 - 1806"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Times of a Branching Process with Immigration in Varying Environments Attaining a Fixed Level\",\"authors\":\"Huaming Wang\",\"doi\":\"10.1007/s10114-025-4035-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Consider a branching process {<i>Z</i><sub><i>n</i></sub>}<sub><i>n</i>≥0</sub> with immigration in varying environments. For <i>a</i> ∈ {0, 1, 2, …}, let <i>C</i>(<i>a</i>) = {<i>n</i> ≥ 0: <i>Z</i><sub><i>n</i></sub> = <i>a</i>} be the collection of times at which the population size of the process attains level <i>a</i>. We give a criterion to determine whether the set <i>C</i>(<i>a</i>) is finite or not. For the critical Galton–Watson process, based on a moment method, we show that <span>\\\\({{| {C(a) \\\\cap [1,n]} |} \\\\over {\\\\log \\\\;n \\\\to S}}\\\\)</span> in distribution, where <i>S</i> is an exponentially distributed random variable with <i>P</i>(<i>S</i> > <i>t</i>) = e<sup>−<i>t</i></sup>, <i>t</i> > 0.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 7\",\"pages\":\"1789 - 1806\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-4035-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-4035-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Times of a Branching Process with Immigration in Varying Environments Attaining a Fixed Level
Consider a branching process {Zn}n≥0 with immigration in varying environments. For a ∈ {0, 1, 2, …}, let C(a) = {n ≥ 0: Zn = a} be the collection of times at which the population size of the process attains level a. We give a criterion to determine whether the set C(a) is finite or not. For the critical Galton–Watson process, based on a moment method, we show that \({{| {C(a) \cap [1,n]} |} \over {\log \;n \to S}}\) in distribution, where S is an exponentially distributed random variable with P(S > t) = e−t, t > 0.
期刊介绍:
Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.