{"title":"真空F(R)重力在行波变量中的积分格式","authors":"Maria V. Shubina","doi":"10.1140/epjc/s10052-025-14763-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we propose the scheme of integration of two-dimensional <i>F</i>(<i>R</i>) gravity vacuum equations in a travelling wave variable. The main emphasis is placed on the fundamental possibility of obtaining different forms of the function <i>F</i>(<i>R</i>) by arbitrarily choosing a certain function through which all components of the metric tensor of the theory can be expressed.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14763-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Scheme of integration of vacuum F(R) gravity in a travelling wave variable\",\"authors\":\"Maria V. Shubina\",\"doi\":\"10.1140/epjc/s10052-025-14763-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article we propose the scheme of integration of two-dimensional <i>F</i>(<i>R</i>) gravity vacuum equations in a travelling wave variable. The main emphasis is placed on the fundamental possibility of obtaining different forms of the function <i>F</i>(<i>R</i>) by arbitrarily choosing a certain function through which all components of the metric tensor of the theory can be expressed.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14763-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14763-0\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14763-0","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Scheme of integration of vacuum F(R) gravity in a travelling wave variable
In this article we propose the scheme of integration of two-dimensional F(R) gravity vacuum equations in a travelling wave variable. The main emphasis is placed on the fundamental possibility of obtaining different forms of the function F(R) by arbitrarily choosing a certain function through which all components of the metric tensor of the theory can be expressed.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.