半导体化合物二维材料辅助外延的研究进展及应用

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2025-09-04 DOI:10.1039/D5CE00546A
Jianjie Li, Yu Xu, Jianxi Xu, Miao Liu, Tian Xia, Jiangpeng Zhu, Yizhe Huang, Liang Wang, Lei Yao, Jianfeng Wang, Bing Cao and Ke Xu
{"title":"半导体化合物二维材料辅助外延的研究进展及应用","authors":"Jianjie Li, Yu Xu, Jianxi Xu, Miao Liu, Tian Xia, Jiangpeng Zhu, Yizhe Huang, Liang Wang, Lei Yao, Jianfeng Wang, Bing Cao and Ke Xu","doi":"10.1039/D5CE00546A","DOIUrl":null,"url":null,"abstract":"<p >The groundbreaking development of semiconductor thin-film materials has played a pivotal role in advancing modern technologies, with extensive applications spanning lighting displays, power electronics, and microwave/RF systems. In vapor-phase epitaxy, the innovative integration of two-dimensional (2D) materials offers revolutionary solutions to address lattice mismatch and thermal expansion mismatch in heteroepitaxial growth: weak van der Waals interactions at interfaces effectively mitigate stress accumulation, while surface state engineering of 2D materials enables precise control over nucleation dynamics. Furthermore, the synergistic relationship between the layer number of 2D materials and substrate polarity allows directional modulation of epitaxial growth. Notably, the breakthrough in detachable transfer of epitaxial layers has unlocked new possibilities for flexible electronics and hybrid integrated devices. This study systematically investigates the unique advantages of 2D materials in optimizing epitaxial growth and expanding device functionalities. By analyzing the heteroepitaxial characteristics of ZnO, GaAs, GaN, and AlN on 2D materials, along with their optoelectronic and high-frequency device applications, we provide a theoretical framework and practical guidance to overcome current technological limitations and outline future research directions.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 37","pages":" 6088-6105"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements and applications in two-dimensional material-assisted epitaxy of semiconductor compounds\",\"authors\":\"Jianjie Li, Yu Xu, Jianxi Xu, Miao Liu, Tian Xia, Jiangpeng Zhu, Yizhe Huang, Liang Wang, Lei Yao, Jianfeng Wang, Bing Cao and Ke Xu\",\"doi\":\"10.1039/D5CE00546A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The groundbreaking development of semiconductor thin-film materials has played a pivotal role in advancing modern technologies, with extensive applications spanning lighting displays, power electronics, and microwave/RF systems. In vapor-phase epitaxy, the innovative integration of two-dimensional (2D) materials offers revolutionary solutions to address lattice mismatch and thermal expansion mismatch in heteroepitaxial growth: weak van der Waals interactions at interfaces effectively mitigate stress accumulation, while surface state engineering of 2D materials enables precise control over nucleation dynamics. Furthermore, the synergistic relationship between the layer number of 2D materials and substrate polarity allows directional modulation of epitaxial growth. Notably, the breakthrough in detachable transfer of epitaxial layers has unlocked new possibilities for flexible electronics and hybrid integrated devices. This study systematically investigates the unique advantages of 2D materials in optimizing epitaxial growth and expanding device functionalities. By analyzing the heteroepitaxial characteristics of ZnO, GaAs, GaN, and AlN on 2D materials, along with their optoelectronic and high-frequency device applications, we provide a theoretical framework and practical guidance to overcome current technological limitations and outline future research directions.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 37\",\"pages\":\" 6088-6105\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00546a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00546a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

半导体薄膜材料的突破性发展在推进现代技术方面发挥了关键作用,广泛应用于照明显示,电力电子和微波/射频系统。在气相外延中,二维(2D)材料的创新集成为解决异质外延生长中的晶格失配和热膨胀失配提供了革命性的解决方案:界面处的弱范德华相互作用有效地减轻了应力积累,而二维材料的表面态工程能够精确控制成核动力学。此外,二维材料层数和衬底极性之间的协同关系允许外延生长的定向调制。值得注意的是,外延层可拆卸转移的突破为柔性电子和混合集成器件提供了新的可能性。本研究系统地探讨了二维材料在优化外延生长和扩展器件功能方面的独特优势。通过分析ZnO, GaAs, GaN和AlN在二维材料上的异质外延特性及其光电和高频器件应用,我们为克服当前的技术限制和概述未来的研究方向提供了理论框架和实践指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancements and applications in two-dimensional material-assisted epitaxy of semiconductor compounds

Advancements and applications in two-dimensional material-assisted epitaxy of semiconductor compounds

The groundbreaking development of semiconductor thin-film materials has played a pivotal role in advancing modern technologies, with extensive applications spanning lighting displays, power electronics, and microwave/RF systems. In vapor-phase epitaxy, the innovative integration of two-dimensional (2D) materials offers revolutionary solutions to address lattice mismatch and thermal expansion mismatch in heteroepitaxial growth: weak van der Waals interactions at interfaces effectively mitigate stress accumulation, while surface state engineering of 2D materials enables precise control over nucleation dynamics. Furthermore, the synergistic relationship between the layer number of 2D materials and substrate polarity allows directional modulation of epitaxial growth. Notably, the breakthrough in detachable transfer of epitaxial layers has unlocked new possibilities for flexible electronics and hybrid integrated devices. This study systematically investigates the unique advantages of 2D materials in optimizing epitaxial growth and expanding device functionalities. By analyzing the heteroepitaxial characteristics of ZnO, GaAs, GaN, and AlN on 2D materials, along with their optoelectronic and high-frequency device applications, we provide a theoretical framework and practical guidance to overcome current technological limitations and outline future research directions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信