不锈钢表面氧化物在停滞液钠中溶解和沉淀的新动力学模型

IF 2.3 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Munemichi Kawaguchi , Asuka Ikeda , Jun-ichi Saito
{"title":"不锈钢表面氧化物在停滞液钠中溶解和沉淀的新动力学模型","authors":"Munemichi Kawaguchi ,&nbsp;Asuka Ikeda ,&nbsp;Jun-ichi Saito","doi":"10.1016/j.anucene.2025.111880","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents sodium experiments and a novel kinetic model to elucidate the dissolution and precipitation behavior of oxides on the stainless-steel (SS) surface in stagnant liquid sodium. Experiment results demonstrated that the oxygen from Na<sub>4</sub>FeO<sub>3</sub> on the SS surface dissolved into the liquid sodium at a rate of <span><math><mrow><msub><mi>v</mi><mrow><mi>d</mi><mi>i</mi><mi>s</mi></mrow></msub><mo>≈</mo><mn>9.3</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>-</mo><mn>5</mn></mrow></msup></mrow></math></span> wt.ratio/h within 20 h. Subsequently, oxide precipitation occurred on the SS surface at a rate of <span><math><mrow><msub><mi>v</mi><mrow><mi>p</mi><mi>r</mi><mi>e</mi></mrow></msub><mo>≈</mo><mn>1.4</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>-</mo><mn>5</mn></mrow></msup></mrow></math></span> wt.ratio/h. To further investigate the precipitation dynamics, a phase-field (PF) simulation code was developed, enabling sensitivity analyses of six parameters: temperature (<span><math><mi>T</mi></math></span>), initial oxygen concentration (<span><math><msub><mi>c</mi><mn>0</mn></msub></math></span>), interfacial energy (<span><math><mi>γ</mi></math></span>), oxygen diffusion coefficient (<span><math><msub><mi>D</mi><mi>L</mi></msub></math></span>), quasi-partition coefficient (<span><math><mi>k</mi></math></span>), and time step (<span><math><mrow><mi>Δ</mi><mi>t</mi></mrow></math></span>). The PF simulations revealed that the precipitation rate increases linearly with <span><math><msub><mi>c</mi><mn>0</mn></msub></math></span> and <span><math><msub><mi>D</mi><mi>L</mi></msub></math></span>. In contrast, it decreases exponentially with increasing <span><math><mi>T</mi></math></span> and <span><math><mi>γ</mi></math></span>. The parameters <span><math><mi>k</mi></math></span> and <span><math><mrow><mi>Δ</mi><mi>t</mi></mrow></math></span> exhibited negligible influence on the calculation results. Notably, the oxide precipitation rates obtained by the PF calculation show consistency with the laboratory-scale experimental findings reported by LatgÉ et al, supporting the model’s validity.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":"226 ","pages":"Article 111880"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel kinetic model for dissolution and precipitation of oxide on stainless-steel surface in stagnant liquid sodium\",\"authors\":\"Munemichi Kawaguchi ,&nbsp;Asuka Ikeda ,&nbsp;Jun-ichi Saito\",\"doi\":\"10.1016/j.anucene.2025.111880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents sodium experiments and a novel kinetic model to elucidate the dissolution and precipitation behavior of oxides on the stainless-steel (SS) surface in stagnant liquid sodium. Experiment results demonstrated that the oxygen from Na<sub>4</sub>FeO<sub>3</sub> on the SS surface dissolved into the liquid sodium at a rate of <span><math><mrow><msub><mi>v</mi><mrow><mi>d</mi><mi>i</mi><mi>s</mi></mrow></msub><mo>≈</mo><mn>9.3</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>-</mo><mn>5</mn></mrow></msup></mrow></math></span> wt.ratio/h within 20 h. Subsequently, oxide precipitation occurred on the SS surface at a rate of <span><math><mrow><msub><mi>v</mi><mrow><mi>p</mi><mi>r</mi><mi>e</mi></mrow></msub><mo>≈</mo><mn>1.4</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>-</mo><mn>5</mn></mrow></msup></mrow></math></span> wt.ratio/h. To further investigate the precipitation dynamics, a phase-field (PF) simulation code was developed, enabling sensitivity analyses of six parameters: temperature (<span><math><mi>T</mi></math></span>), initial oxygen concentration (<span><math><msub><mi>c</mi><mn>0</mn></msub></math></span>), interfacial energy (<span><math><mi>γ</mi></math></span>), oxygen diffusion coefficient (<span><math><msub><mi>D</mi><mi>L</mi></msub></math></span>), quasi-partition coefficient (<span><math><mi>k</mi></math></span>), and time step (<span><math><mrow><mi>Δ</mi><mi>t</mi></mrow></math></span>). The PF simulations revealed that the precipitation rate increases linearly with <span><math><msub><mi>c</mi><mn>0</mn></msub></math></span> and <span><math><msub><mi>D</mi><mi>L</mi></msub></math></span>. In contrast, it decreases exponentially with increasing <span><math><mi>T</mi></math></span> and <span><math><mi>γ</mi></math></span>. The parameters <span><math><mi>k</mi></math></span> and <span><math><mrow><mi>Δ</mi><mi>t</mi></mrow></math></span> exhibited negligible influence on the calculation results. Notably, the oxide precipitation rates obtained by the PF calculation show consistency with the laboratory-scale experimental findings reported by LatgÉ et al, supporting the model’s validity.</div></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":\"226 \",\"pages\":\"Article 111880\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454925006978\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454925006978","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过钠离子实验和新的动力学模型来阐明不锈钢(SS)表面氧化物在停滞液态钠中的溶解和沉淀行为。实验结果表明,SS表面的Na4FeO3中的氧在20 h内以vdis≈9.3×10-5 wt.ratio/h的速率溶解到液钠中,随后SS表面以vpre≈1.4×10-5 wt.ratio/h的速率析出氧化物。为了进一步研究降水动力学,开发了相场(PF)模拟代码,可以对六个参数进行灵敏度分析:温度(T)、初始氧浓度(c0)、界面能(γ)、氧扩散系数(DL)、准配分系数(k)和时间步长(Δt)。PF模拟结果表明,降水速率随c0和DL呈线性增加。相反,它随着T和γ的增加呈指数下降。参数k和Δt对计算结果的影响可以忽略不计。值得注意的是,通过PF计算得到的氧化物析出率与LatgÉ等人报告的实验室规模实验结果一致,支持了模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel kinetic model for dissolution and precipitation of oxide on stainless-steel surface in stagnant liquid sodium
This study presents sodium experiments and a novel kinetic model to elucidate the dissolution and precipitation behavior of oxides on the stainless-steel (SS) surface in stagnant liquid sodium. Experiment results demonstrated that the oxygen from Na4FeO3 on the SS surface dissolved into the liquid sodium at a rate of vdis9.3×10-5 wt.ratio/h within 20 h. Subsequently, oxide precipitation occurred on the SS surface at a rate of vpre1.4×10-5 wt.ratio/h. To further investigate the precipitation dynamics, a phase-field (PF) simulation code was developed, enabling sensitivity analyses of six parameters: temperature (T), initial oxygen concentration (c0), interfacial energy (γ), oxygen diffusion coefficient (DL), quasi-partition coefficient (k), and time step (Δt). The PF simulations revealed that the precipitation rate increases linearly with c0 and DL. In contrast, it decreases exponentially with increasing T and γ. The parameters k and Δt exhibited negligible influence on the calculation results. Notably, the oxide precipitation rates obtained by the PF calculation show consistency with the laboratory-scale experimental findings reported by LatgÉ et al, supporting the model’s validity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Nuclear Energy
Annals of Nuclear Energy 工程技术-核科学技术
CiteScore
4.30
自引率
21.10%
发文量
632
审稿时长
7.3 months
期刊介绍: Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信