通过FDR控制鲁棒选择改变点的数量

IF 1.6 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hui Chen , Chengde Qian , Qin Zhou
{"title":"通过FDR控制鲁棒选择改变点的数量","authors":"Hui Chen ,&nbsp;Chengde Qian ,&nbsp;Qin Zhou","doi":"10.1016/j.csda.2025.108272","DOIUrl":null,"url":null,"abstract":"<div><div>Robust quantification of uncertainty regarding the number of change-points presents a significant challenge in data analysis, particularly when employing false discovery rate (FDR) control techniques. Emphasizing the detection of genuine signals while controlling false positives is crucial, especially for identifying shifts in location parameters within flexible distributions. Traditional parametric methods often exhibit sensitivity to outliers and heavy-tailed data. Addressing this limitation, a robust method accommodating diverse data structures is proposed. The approach constructs component-wise sign-based statistics. Leveraging the global symmetry inherent in these statistics enables the derivation of data-driven thresholds suitable for multiple testing scenarios. Method development occurs within the framework of U-statistics, which naturally encompasses existing cumulative sum-based procedures. Theoretical guarantees establish FDR control for the component-wise sign-based method under mild assumptions. Demonstrations of effectiveness utilize simulations with synthetic data and analyses of real data.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"214 ","pages":"Article 108272"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust selection of the number of change-points via FDR control\",\"authors\":\"Hui Chen ,&nbsp;Chengde Qian ,&nbsp;Qin Zhou\",\"doi\":\"10.1016/j.csda.2025.108272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Robust quantification of uncertainty regarding the number of change-points presents a significant challenge in data analysis, particularly when employing false discovery rate (FDR) control techniques. Emphasizing the detection of genuine signals while controlling false positives is crucial, especially for identifying shifts in location parameters within flexible distributions. Traditional parametric methods often exhibit sensitivity to outliers and heavy-tailed data. Addressing this limitation, a robust method accommodating diverse data structures is proposed. The approach constructs component-wise sign-based statistics. Leveraging the global symmetry inherent in these statistics enables the derivation of data-driven thresholds suitable for multiple testing scenarios. Method development occurs within the framework of U-statistics, which naturally encompasses existing cumulative sum-based procedures. Theoretical guarantees establish FDR control for the component-wise sign-based method under mild assumptions. Demonstrations of effectiveness utilize simulations with synthetic data and analyses of real data.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"214 \",\"pages\":\"Article 108272\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947325001483\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325001483","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

关于变化点数量的不确定性的稳健量化在数据分析中提出了重大挑战,特别是在采用错误发现率(FDR)控制技术时。在控制误报的同时强调检测真实信号是至关重要的,特别是在灵活分布中识别位置参数的变化。传统的参数化方法往往对异常值和重尾数据敏感。针对这一限制,提出了一种适应多种数据结构的鲁棒方法。该方法构建基于组件的符号统计。利用这些统计数据中固有的全局对称性,可以推导出适合于多个测试场景的数据驱动的阈值。方法开发是在U-statistics框架内进行的,它自然包含现有的基于累积和的程序。理论保证在温和的假设下为基于组件的符号方法建立FDR控制。有效性的演示利用模拟合成数据和分析真实数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust selection of the number of change-points via FDR control
Robust quantification of uncertainty regarding the number of change-points presents a significant challenge in data analysis, particularly when employing false discovery rate (FDR) control techniques. Emphasizing the detection of genuine signals while controlling false positives is crucial, especially for identifying shifts in location parameters within flexible distributions. Traditional parametric methods often exhibit sensitivity to outliers and heavy-tailed data. Addressing this limitation, a robust method accommodating diverse data structures is proposed. The approach constructs component-wise sign-based statistics. Leveraging the global symmetry inherent in these statistics enables the derivation of data-driven thresholds suitable for multiple testing scenarios. Method development occurs within the framework of U-statistics, which naturally encompasses existing cumulative sum-based procedures. Theoretical guarantees establish FDR control for the component-wise sign-based method under mild assumptions. Demonstrations of effectiveness utilize simulations with synthetic data and analyses of real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信