{"title":"函数线性模型的测度选择","authors":"Su I Iao, Hans-Georg Müller","doi":"10.1016/j.csda.2025.108270","DOIUrl":null,"url":null,"abstract":"<div><div>Advancements in modern science have led to an increased prevalence of functional data, which are usually viewed as elements of the space of square-integrable functions <span><math><msup><mi>L</mi><mn>2</mn></msup></math></span>. Core methods in functional data analysis, such as functional principal component analysis, are typically grounded in the Hilbert structure of <span><math><msup><mi>L</mi><mn>2</mn></msup></math></span> and rely on inner products based on integrals with respect to the Lebesgue measure over a fixed domain. A more flexible framework is proposed, where the measure can be arbitrary, allowing natural extensions to unbounded domains and prompting the question of optimal measure choice. Specifically, a novel functional linear model is introduced that incorporates a data-adaptive choice of the measure that defines the space, alongside an enhanced function principal component analysis. Selecting a good measure can improve the model’s predictive performance, especially when the underlying processes are not well-represented when adopting the default Lebesgue measure. Simulations, as well as applications to COVID-19 data and the National Health and Nutrition Examination Survey data, show that the proposed approach consistently outperforms the conventional functional linear model.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"214 ","pages":"Article 108270"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measure selection for functional linear model\",\"authors\":\"Su I Iao, Hans-Georg Müller\",\"doi\":\"10.1016/j.csda.2025.108270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Advancements in modern science have led to an increased prevalence of functional data, which are usually viewed as elements of the space of square-integrable functions <span><math><msup><mi>L</mi><mn>2</mn></msup></math></span>. Core methods in functional data analysis, such as functional principal component analysis, are typically grounded in the Hilbert structure of <span><math><msup><mi>L</mi><mn>2</mn></msup></math></span> and rely on inner products based on integrals with respect to the Lebesgue measure over a fixed domain. A more flexible framework is proposed, where the measure can be arbitrary, allowing natural extensions to unbounded domains and prompting the question of optimal measure choice. Specifically, a novel functional linear model is introduced that incorporates a data-adaptive choice of the measure that defines the space, alongside an enhanced function principal component analysis. Selecting a good measure can improve the model’s predictive performance, especially when the underlying processes are not well-represented when adopting the default Lebesgue measure. Simulations, as well as applications to COVID-19 data and the National Health and Nutrition Examination Survey data, show that the proposed approach consistently outperforms the conventional functional linear model.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"214 \",\"pages\":\"Article 108270\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016794732500146X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016794732500146X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Advancements in modern science have led to an increased prevalence of functional data, which are usually viewed as elements of the space of square-integrable functions . Core methods in functional data analysis, such as functional principal component analysis, are typically grounded in the Hilbert structure of and rely on inner products based on integrals with respect to the Lebesgue measure over a fixed domain. A more flexible framework is proposed, where the measure can be arbitrary, allowing natural extensions to unbounded domains and prompting the question of optimal measure choice. Specifically, a novel functional linear model is introduced that incorporates a data-adaptive choice of the measure that defines the space, alongside an enhanced function principal component analysis. Selecting a good measure can improve the model’s predictive performance, especially when the underlying processes are not well-represented when adopting the default Lebesgue measure. Simulations, as well as applications to COVID-19 data and the National Health and Nutrition Examination Survey data, show that the proposed approach consistently outperforms the conventional functional linear model.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]