链接稍不一致的旋转Möbius万花筒的运动学和静态特性

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Claudio Boni , Eliot Fried , Gianni Royer-Carfagni
{"title":"链接稍不一致的旋转Möbius万花筒的运动学和静态特性","authors":"Claudio Boni ,&nbsp;Eliot Fried ,&nbsp;Gianni Royer-Carfagni","doi":"10.1016/j.mechmachtheory.2025.106185","DOIUrl":null,"url":null,"abstract":"<div><div>A Möbius kaleidocycle is a closed kinematic chain of <span><math><mrow><mi>n</mi><mo>≥</mo><mn>7</mn></mrow></math></span> identical links connected by revolute joints, forming a linkage with the nonorientable topology of a Möbius band. If its joints are set at a critical, <span><math><mi>n</mi></math></span>-dependent twist angle — the smallest that allows closure without forcing — then, despite formally having <span><math><mrow><mi>n</mi><mo>−</mo><mn>6</mn></mrow></math></span> internal degrees of freedom, the linkage admits only a single one: a reversible, periodic everting motion. Focusing on the case <span><math><mrow><mi>n</mi><mo>=</mo><mn>7</mn></mrow></math></span>, we determine the kinematic matrix via the Denavit–Hartenberg construction, under closure and congruence constraints. A geometric mechanism arises alongside the topological one due to a matrix-rank deficiency, accompanied by a corresponding state of self-stress. The geometric mechanism is <em>infinitesimal</em> and stiffened by self-stress, while eversion is enabled by the <em>finite</em> mechanism. Using a variational argument, we confirm that the sum of squared joint rotations remains constant throughout eversion. We further categorize the states of self-stress, identifying conserved quantities — including the sum of twisting moments raised to any positive integer power <span><math><mrow><mi>λ</mi><mo>≥</mo><mn>1</mn></mrow></math></span> — which enable estimates of self-stresses in moderately incongruent linkages requiring elastic forcing to close.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"216 ","pages":"Article 106185"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematic and static characterization of everting Möbius kaleidocycles with slightly incongruent links\",\"authors\":\"Claudio Boni ,&nbsp;Eliot Fried ,&nbsp;Gianni Royer-Carfagni\",\"doi\":\"10.1016/j.mechmachtheory.2025.106185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A Möbius kaleidocycle is a closed kinematic chain of <span><math><mrow><mi>n</mi><mo>≥</mo><mn>7</mn></mrow></math></span> identical links connected by revolute joints, forming a linkage with the nonorientable topology of a Möbius band. If its joints are set at a critical, <span><math><mi>n</mi></math></span>-dependent twist angle — the smallest that allows closure without forcing — then, despite formally having <span><math><mrow><mi>n</mi><mo>−</mo><mn>6</mn></mrow></math></span> internal degrees of freedom, the linkage admits only a single one: a reversible, periodic everting motion. Focusing on the case <span><math><mrow><mi>n</mi><mo>=</mo><mn>7</mn></mrow></math></span>, we determine the kinematic matrix via the Denavit–Hartenberg construction, under closure and congruence constraints. A geometric mechanism arises alongside the topological one due to a matrix-rank deficiency, accompanied by a corresponding state of self-stress. The geometric mechanism is <em>infinitesimal</em> and stiffened by self-stress, while eversion is enabled by the <em>finite</em> mechanism. Using a variational argument, we confirm that the sum of squared joint rotations remains constant throughout eversion. We further categorize the states of self-stress, identifying conserved quantities — including the sum of twisting moments raised to any positive integer power <span><math><mrow><mi>λ</mi><mo>≥</mo><mn>1</mn></mrow></math></span> — which enable estimates of self-stresses in moderately incongruent linkages requiring elastic forcing to close.</div></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":\"216 \",\"pages\":\"Article 106185\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X25002745\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X25002745","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

Möbius万花筒是一个由n≥7个相同连杆组成的封闭运动链,通过转动关节连接,形成一个具有Möbius带不可定向拓扑结构的连杆机构。如果它的关节被设置在一个临界的,依赖于n的扭转角——最小的,允许关闭而不强迫——那么,尽管形式上有n- 6个内部自由度,连杆只允许一个:可逆的,周期性的旋转运动。针对n=7的情况,我们在闭合约束和同余约束下,通过Denavit-Hartenberg构造来确定运动学矩阵。由于矩阵秩缺陷,几何机制与拓扑机制一起出现,并伴有相应的自应力状态。几何机构是无穷小的,由自应力增强,而有限机构是外伸的。利用变分论证,我们证实了关节旋转平方和在整个迭代过程中保持不变。我们进一步对自应力状态进行了分类,确定了守恒量——包括提高到任意正整数幂λ≥1的扭矩总和——这使得在需要弹性力关闭的适度不一致连杆中能够估计自应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinematic and static characterization of everting Möbius kaleidocycles with slightly incongruent links
A Möbius kaleidocycle is a closed kinematic chain of n7 identical links connected by revolute joints, forming a linkage with the nonorientable topology of a Möbius band. If its joints are set at a critical, n-dependent twist angle — the smallest that allows closure without forcing — then, despite formally having n6 internal degrees of freedom, the linkage admits only a single one: a reversible, periodic everting motion. Focusing on the case n=7, we determine the kinematic matrix via the Denavit–Hartenberg construction, under closure and congruence constraints. A geometric mechanism arises alongside the topological one due to a matrix-rank deficiency, accompanied by a corresponding state of self-stress. The geometric mechanism is infinitesimal and stiffened by self-stress, while eversion is enabled by the finite mechanism. Using a variational argument, we confirm that the sum of squared joint rotations remains constant throughout eversion. We further categorize the states of self-stress, identifying conserved quantities — including the sum of twisting moments raised to any positive integer power λ1 — which enable estimates of self-stresses in moderately incongruent linkages requiring elastic forcing to close.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信