{"title":"黑洞周围磁化吸积引起的外流的能量学:统一的盘喷流连接的描述","authors":"Shubhrangshu Ghosh , Sudip Bhattacharyya","doi":"10.1016/j.jheap.2025.100469","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the global energetics of the magnetized accretion-induced outflow in the context of a two-temperature accreting plasma around black holes (BHs), explicitly incorporating the effect of the ‘Ohmic heating’. We obtain substantially high electron temperature, with <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> even reaching <span><math><mo>∼</mo><mn>5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>10</mn></mrow></msup><mi>K</mi></math></span> in the inner regions of the flow. The radiative cooling is primarily determined by the synchrotron loss which mostly dominates the inner accretion region, more so, in the context of flows towards super massive BHs (SMBHs). However, at a relatively high <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mi>Edd</mi></mrow></msub></math></span>, bremsstrahlung emission dominates most of the accretion region. For stellar mass BHs, on the other hand, synchrotron dominates the cooling for a considerable portion of the inner and middle accretion region, with emission cooling rates significantly higher. Electron heating is primarily governed by turbulent Ohmic dissipation, with <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> primarily determined by the balance between Ohmic heating and synchrotron cooling. We obtain relatively high values of luminosity reaching <span><math><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>42</mn></mrow></msup><mspace></mspace><mrow><mi>erg</mi><mspace></mspace><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> and surpassing <span><math><msup><mrow><mn>10</mn></mrow><mrow><mn>35</mn></mrow></msup><mspace></mspace><mrow><mi>erg</mi><mspace></mspace><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, from the inner accretion region, corresponding to <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>BH</mi></mrow></msub><mo>=</mo><mo>(</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>8</mn></mrow></msup><mo>,</mo><mn>10</mn><mo>)</mo><mspace></mspace><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, respectively, for moderately advective flows. Based on the estimates of the ratio of ‘mass flow rate into the jet’ to ‘mass inflow rate’ <span><math><mo>(</mo><msub><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mi>j</mi></mrow></msub><mo>/</mo><mover><mrow><mi>M</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>)</mo></math></span>, and comparing our theoretical finding with the ratio of radio-to-X-ray luminosities for several BH X-ray binaries (BHXRBs), we tentatively suggest that both steady and transient jets in BHXRBs could primarily be accretion powered, indicating a possible unified scenario of two BHXRB states with jets.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"50 ","pages":"Article 100469"},"PeriodicalIF":10.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energetics of magnetized accretion-induced outflows around black holes: Description of a unified disk-jet connection\",\"authors\":\"Shubhrangshu Ghosh , Sudip Bhattacharyya\",\"doi\":\"10.1016/j.jheap.2025.100469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the global energetics of the magnetized accretion-induced outflow in the context of a two-temperature accreting plasma around black holes (BHs), explicitly incorporating the effect of the ‘Ohmic heating’. We obtain substantially high electron temperature, with <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> even reaching <span><math><mo>∼</mo><mn>5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>10</mn></mrow></msup><mi>K</mi></math></span> in the inner regions of the flow. The radiative cooling is primarily determined by the synchrotron loss which mostly dominates the inner accretion region, more so, in the context of flows towards super massive BHs (SMBHs). However, at a relatively high <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mi>Edd</mi></mrow></msub></math></span>, bremsstrahlung emission dominates most of the accretion region. For stellar mass BHs, on the other hand, synchrotron dominates the cooling for a considerable portion of the inner and middle accretion region, with emission cooling rates significantly higher. Electron heating is primarily governed by turbulent Ohmic dissipation, with <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> primarily determined by the balance between Ohmic heating and synchrotron cooling. We obtain relatively high values of luminosity reaching <span><math><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>42</mn></mrow></msup><mspace></mspace><mrow><mi>erg</mi><mspace></mspace><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> and surpassing <span><math><msup><mrow><mn>10</mn></mrow><mrow><mn>35</mn></mrow></msup><mspace></mspace><mrow><mi>erg</mi><mspace></mspace><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, from the inner accretion region, corresponding to <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>BH</mi></mrow></msub><mo>=</mo><mo>(</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>8</mn></mrow></msup><mo>,</mo><mn>10</mn><mo>)</mo><mspace></mspace><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, respectively, for moderately advective flows. Based on the estimates of the ratio of ‘mass flow rate into the jet’ to ‘mass inflow rate’ <span><math><mo>(</mo><msub><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mi>j</mi></mrow></msub><mo>/</mo><mover><mrow><mi>M</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>)</mo></math></span>, and comparing our theoretical finding with the ratio of radio-to-X-ray luminosities for several BH X-ray binaries (BHXRBs), we tentatively suggest that both steady and transient jets in BHXRBs could primarily be accretion powered, indicating a possible unified scenario of two BHXRB states with jets.</div></div>\",\"PeriodicalId\":54265,\"journal\":{\"name\":\"Journal of High Energy Astrophysics\",\"volume\":\"50 \",\"pages\":\"Article 100469\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214404825001508\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404825001508","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Energetics of magnetized accretion-induced outflows around black holes: Description of a unified disk-jet connection
We investigate the global energetics of the magnetized accretion-induced outflow in the context of a two-temperature accreting plasma around black holes (BHs), explicitly incorporating the effect of the ‘Ohmic heating’. We obtain substantially high electron temperature, with even reaching in the inner regions of the flow. The radiative cooling is primarily determined by the synchrotron loss which mostly dominates the inner accretion region, more so, in the context of flows towards super massive BHs (SMBHs). However, at a relatively high , bremsstrahlung emission dominates most of the accretion region. For stellar mass BHs, on the other hand, synchrotron dominates the cooling for a considerable portion of the inner and middle accretion region, with emission cooling rates significantly higher. Electron heating is primarily governed by turbulent Ohmic dissipation, with primarily determined by the balance between Ohmic heating and synchrotron cooling. We obtain relatively high values of luminosity reaching and surpassing , from the inner accretion region, corresponding to , respectively, for moderately advective flows. Based on the estimates of the ratio of ‘mass flow rate into the jet’ to ‘mass inflow rate’ , and comparing our theoretical finding with the ratio of radio-to-X-ray luminosities for several BH X-ray binaries (BHXRBs), we tentatively suggest that both steady and transient jets in BHXRBs could primarily be accretion powered, indicating a possible unified scenario of two BHXRB states with jets.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.