基于软件的自动区分是有缺陷的

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Daniel Johnson , Trevor Maxfield , Yongxu Jin , Ronald Fedkiw
{"title":"基于软件的自动区分是有缺陷的","authors":"Daniel Johnson ,&nbsp;Trevor Maxfield ,&nbsp;Yongxu Jin ,&nbsp;Ronald Fedkiw","doi":"10.1016/j.jcp.2025.114319","DOIUrl":null,"url":null,"abstract":"<div><div>Software efforts in automatic differentiation are built on the observation that every computation is implemented as a series of elementary operations, and that symbolic partial derivatives can be supplied for each of these operations. Any computation can then be traversed (either forwards or backwards) utilizing the chain rule to accumulate derivatives. These frameworks have no mechanism for simplifying these expressions before evaluating them. As we illustrate below, the resulting errors tend to be unbounded.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"542 ","pages":"Article 114319"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Software-based automatic differentiation is flawed\",\"authors\":\"Daniel Johnson ,&nbsp;Trevor Maxfield ,&nbsp;Yongxu Jin ,&nbsp;Ronald Fedkiw\",\"doi\":\"10.1016/j.jcp.2025.114319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Software efforts in automatic differentiation are built on the observation that every computation is implemented as a series of elementary operations, and that symbolic partial derivatives can be supplied for each of these operations. Any computation can then be traversed (either forwards or backwards) utilizing the chain rule to accumulate derivatives. These frameworks have no mechanism for simplifying these expressions before evaluating them. As we illustrate below, the resulting errors tend to be unbounded.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"542 \",\"pages\":\"Article 114319\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002199912500600X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002199912500600X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

自动微分中的软件工作是建立在这样的观察基础上的:每个计算都是作为一系列基本操作实现的,并且可以为每个这些操作提供符号偏导数。然后可以利用链式法则来累加导数来遍历任何计算(向前或向后)。这些框架没有在求值之前简化这些表达式的机制。如下所示,所产生的错误往往是无界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Software-based automatic differentiation is flawed
Software efforts in automatic differentiation are built on the observation that every computation is implemented as a series of elementary operations, and that symbolic partial derivatives can be supplied for each of these operations. Any computation can then be traversed (either forwards or backwards) utilizing the chain rule to accumulate derivatives. These frameworks have no mechanism for simplifying these expressions before evaluating them. As we illustrate below, the resulting errors tend to be unbounded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信