Dan Cui , Yanfang Mo , Xiaofeng Yuan , Lingjian Ye , Kai Wang , Feifan Shen , Yalin Wang , Chunhua Yang , Weihua Gui
{"title":"基于深度学习的指数加权模型预测控制及其在能源管理系统中的应用","authors":"Dan Cui , Yanfang Mo , Xiaofeng Yuan , Lingjian Ye , Kai Wang , Feifan Shen , Yalin Wang , Chunhua Yang , Weihua Gui","doi":"10.1016/j.jprocont.2025.103542","DOIUrl":null,"url":null,"abstract":"<div><div>Building energy management plays an important role in improving the overall system efficiency and reducing energy consumption. To achieve this goal, it is significant and challenging for the optimization of energy consumption and the utilization of renewable energy sources. This work presents a deep learning-based model predictive control with exponential weighting (DLEMPC) strategy to control and optimize Energy Management Systems (EMS). First, an exponential weighting technique with decreasing characteristic is introduced to the cost function over the timeslots in the receding horizon of the MPC to improve the control performance of the system, which aims to obtain the control actions by paying more importance on recent timeslots in the finite time-horizon. Second, a controller based on the deep belief network (DBN) model is proposed to reduce computational complexity of the rolling horizon optimization in practical applications. The deep learning controller is obtained by training it with a large number of input and output data pairs that are generated from a well-defined MPC designed with the new cost function. Finally, the DLEMPC strategy is used to control and optimize an EMS, connected to a grid, battery, HVAC, and solar panel. The results demonstrate that DLEMPC strategy can significantly improve the energy efficiency of buildings and reduce energy consumption compared to the traditional MPC formula.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"155 ","pages":"Article 103542"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based model predictive control with exponential weighting strategy and its application in energy management systems\",\"authors\":\"Dan Cui , Yanfang Mo , Xiaofeng Yuan , Lingjian Ye , Kai Wang , Feifan Shen , Yalin Wang , Chunhua Yang , Weihua Gui\",\"doi\":\"10.1016/j.jprocont.2025.103542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Building energy management plays an important role in improving the overall system efficiency and reducing energy consumption. To achieve this goal, it is significant and challenging for the optimization of energy consumption and the utilization of renewable energy sources. This work presents a deep learning-based model predictive control with exponential weighting (DLEMPC) strategy to control and optimize Energy Management Systems (EMS). First, an exponential weighting technique with decreasing characteristic is introduced to the cost function over the timeslots in the receding horizon of the MPC to improve the control performance of the system, which aims to obtain the control actions by paying more importance on recent timeslots in the finite time-horizon. Second, a controller based on the deep belief network (DBN) model is proposed to reduce computational complexity of the rolling horizon optimization in practical applications. The deep learning controller is obtained by training it with a large number of input and output data pairs that are generated from a well-defined MPC designed with the new cost function. Finally, the DLEMPC strategy is used to control and optimize an EMS, connected to a grid, battery, HVAC, and solar panel. The results demonstrate that DLEMPC strategy can significantly improve the energy efficiency of buildings and reduce energy consumption compared to the traditional MPC formula.</div></div>\",\"PeriodicalId\":50079,\"journal\":{\"name\":\"Journal of Process Control\",\"volume\":\"155 \",\"pages\":\"Article 103542\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Process Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959152425001702\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152425001702","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Deep learning-based model predictive control with exponential weighting strategy and its application in energy management systems
Building energy management plays an important role in improving the overall system efficiency and reducing energy consumption. To achieve this goal, it is significant and challenging for the optimization of energy consumption and the utilization of renewable energy sources. This work presents a deep learning-based model predictive control with exponential weighting (DLEMPC) strategy to control and optimize Energy Management Systems (EMS). First, an exponential weighting technique with decreasing characteristic is introduced to the cost function over the timeslots in the receding horizon of the MPC to improve the control performance of the system, which aims to obtain the control actions by paying more importance on recent timeslots in the finite time-horizon. Second, a controller based on the deep belief network (DBN) model is proposed to reduce computational complexity of the rolling horizon optimization in practical applications. The deep learning controller is obtained by training it with a large number of input and output data pairs that are generated from a well-defined MPC designed with the new cost function. Finally, the DLEMPC strategy is used to control and optimize an EMS, connected to a grid, battery, HVAC, and solar panel. The results demonstrate that DLEMPC strategy can significantly improve the energy efficiency of buildings and reduce energy consumption compared to the traditional MPC formula.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.