改进的基于集合的粒子群优化组合管理方法

IF 4.3
Zander Wessels , Andries Engelbrecht
{"title":"改进的基于集合的粒子群优化组合管理方法","authors":"Zander Wessels ,&nbsp;Andries Engelbrecht","doi":"10.1016/j.iswa.2025.200582","DOIUrl":null,"url":null,"abstract":"<div><div>A novel approach to portfolio optimization is introduced using a variant of set-based particle swarm optimization (SBPSO), building upon the foundational work of Erwin and Engelbrecht. Although their contributions advanced the application of SBPSO to financial markets, this research addresses key practical challenges, specifically enhancing the treatment of covariance and expected returns and refining constraint implementations to align with real-world applications. Beyond algorithmic improvements, this article emphasizes the importance of robust evaluation methodologies and highlights the limitations of traditional backtesting frameworks, which often yield overly optimistic results. To overcome these biases, the study introduces a comprehensive simulation platform that mitigates issues such as survivorship and forward-looking bias. This provides a realistic assessment of the modified SBPSO’s financial performance under varying market conditions. The findings shift the focus from computational efficiency to the practical outcomes of profitability that are most relevant to investors.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"28 ","pages":"Article 200582"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced set-based particle swarm optimization for portfolio management in a walk-forward paradigm\",\"authors\":\"Zander Wessels ,&nbsp;Andries Engelbrecht\",\"doi\":\"10.1016/j.iswa.2025.200582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel approach to portfolio optimization is introduced using a variant of set-based particle swarm optimization (SBPSO), building upon the foundational work of Erwin and Engelbrecht. Although their contributions advanced the application of SBPSO to financial markets, this research addresses key practical challenges, specifically enhancing the treatment of covariance and expected returns and refining constraint implementations to align with real-world applications. Beyond algorithmic improvements, this article emphasizes the importance of robust evaluation methodologies and highlights the limitations of traditional backtesting frameworks, which often yield overly optimistic results. To overcome these biases, the study introduces a comprehensive simulation platform that mitigates issues such as survivorship and forward-looking bias. This provides a realistic assessment of the modified SBPSO’s financial performance under varying market conditions. The findings shift the focus from computational efficiency to the practical outcomes of profitability that are most relevant to investors.</div></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"28 \",\"pages\":\"Article 200582\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667305325001085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305325001085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在Erwin和Engelbrecht的基础上,提出了一种新的基于集合的粒子群优化(SBPSO)的组合优化方法。尽管他们的贡献推动了SBPSO在金融市场的应用,但本研究解决了关键的实际挑战,特别是加强了协方差和预期收益的处理,并改进了约束实现,使其与现实世界的应用保持一致。除了算法改进之外,本文还强调了健壮的评估方法的重要性,并强调了传统回测框架的局限性,这些框架通常会产生过于乐观的结果。为了克服这些偏见,该研究引入了一个全面的模拟平台,以减轻诸如生存和前瞻性偏见等问题。这提供了一个现实的评估修改后的SBPSO的财务业绩在不同的市场条件下。研究结果将重点从计算效率转移到与投资者最相关的盈利能力的实际结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced set-based particle swarm optimization for portfolio management in a walk-forward paradigm
A novel approach to portfolio optimization is introduced using a variant of set-based particle swarm optimization (SBPSO), building upon the foundational work of Erwin and Engelbrecht. Although their contributions advanced the application of SBPSO to financial markets, this research addresses key practical challenges, specifically enhancing the treatment of covariance and expected returns and refining constraint implementations to align with real-world applications. Beyond algorithmic improvements, this article emphasizes the importance of robust evaluation methodologies and highlights the limitations of traditional backtesting frameworks, which often yield overly optimistic results. To overcome these biases, the study introduces a comprehensive simulation platform that mitigates issues such as survivorship and forward-looking bias. This provides a realistic assessment of the modified SBPSO’s financial performance under varying market conditions. The findings shift the focus from computational efficiency to the practical outcomes of profitability that are most relevant to investors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信