Juan C. Velasquez-Gonzalez , Juan David Navarro , Mauricio Aristizabal , Harry Millwater , David Restrepo
{"title":"具有超复杂自动微分的宽带隙声子超材料的导数增强贝叶斯优化","authors":"Juan C. Velasquez-Gonzalez , Juan David Navarro , Mauricio Aristizabal , Harry Millwater , David Restrepo","doi":"10.1016/j.finel.2025.104461","DOIUrl":null,"url":null,"abstract":"<div><div>The design of Phononic Metamaterials (PM) with unique dynamic behaviors and wave propagation characteristics remains a significant challenge due to the highly non-linear relationships between design parameters and response. The arrangement of the periodic unit cells within PM is crucial for determining their dynamic behavior, making optimization methods essential for the design and development of these materials. These methods are used to tailor bandgap characteristics such as bandwidth and frequency location by optimizing the unit cell’s geometric parameters. However, existing approaches often suffer from slow convergence rates, entrapment in local minimum, or require numerous expensive evaluations of the objective function. To address these challenges, this work proposes using a novel derivative-enhanced Bayesian optimization (DEBO) framework that integrates Hypercomplex Automatic Differentiation (HYPAD) with a Gradient-Enhanced Gaussian Process (GEGP) interpolator surrogate model. This combination enables the accurate and efficient computation of objective function sensitivities, resulting in more reliable and data-efficient surrogate models. As a result, DEBO significantly improves the robustness of BO against local minima, which is particularly beneficial for the non-convex optimization problem characteristic of PM design. The framework is applied to optimize the geometry of a two-dimensional cross-shaped unit cell, maximizing bandgap width at low mid-frequencies. By consistently converging to the global optimum, we demonstrate that DEBO outperforms traditional methods, including derivative-free Bayesian optimization, gradient-based numerical optimization, and metaheuristics. Furthermore, experimental validation of the optimized geometry aligns closely with numerical predictions, confirming the effectiveness of the approach.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"252 ","pages":"Article 104461"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivative-enhanced Bayesian optimization for broad-bandgap phononic metamaterials with hypercomplex automatic differentiation\",\"authors\":\"Juan C. Velasquez-Gonzalez , Juan David Navarro , Mauricio Aristizabal , Harry Millwater , David Restrepo\",\"doi\":\"10.1016/j.finel.2025.104461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The design of Phononic Metamaterials (PM) with unique dynamic behaviors and wave propagation characteristics remains a significant challenge due to the highly non-linear relationships between design parameters and response. The arrangement of the periodic unit cells within PM is crucial for determining their dynamic behavior, making optimization methods essential for the design and development of these materials. These methods are used to tailor bandgap characteristics such as bandwidth and frequency location by optimizing the unit cell’s geometric parameters. However, existing approaches often suffer from slow convergence rates, entrapment in local minimum, or require numerous expensive evaluations of the objective function. To address these challenges, this work proposes using a novel derivative-enhanced Bayesian optimization (DEBO) framework that integrates Hypercomplex Automatic Differentiation (HYPAD) with a Gradient-Enhanced Gaussian Process (GEGP) interpolator surrogate model. This combination enables the accurate and efficient computation of objective function sensitivities, resulting in more reliable and data-efficient surrogate models. As a result, DEBO significantly improves the robustness of BO against local minima, which is particularly beneficial for the non-convex optimization problem characteristic of PM design. The framework is applied to optimize the geometry of a two-dimensional cross-shaped unit cell, maximizing bandgap width at low mid-frequencies. By consistently converging to the global optimum, we demonstrate that DEBO outperforms traditional methods, including derivative-free Bayesian optimization, gradient-based numerical optimization, and metaheuristics. Furthermore, experimental validation of the optimized geometry aligns closely with numerical predictions, confirming the effectiveness of the approach.</div></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":\"252 \",\"pages\":\"Article 104461\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X25001507\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X25001507","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Derivative-enhanced Bayesian optimization for broad-bandgap phononic metamaterials with hypercomplex automatic differentiation
The design of Phononic Metamaterials (PM) with unique dynamic behaviors and wave propagation characteristics remains a significant challenge due to the highly non-linear relationships between design parameters and response. The arrangement of the periodic unit cells within PM is crucial for determining their dynamic behavior, making optimization methods essential for the design and development of these materials. These methods are used to tailor bandgap characteristics such as bandwidth and frequency location by optimizing the unit cell’s geometric parameters. However, existing approaches often suffer from slow convergence rates, entrapment in local minimum, or require numerous expensive evaluations of the objective function. To address these challenges, this work proposes using a novel derivative-enhanced Bayesian optimization (DEBO) framework that integrates Hypercomplex Automatic Differentiation (HYPAD) with a Gradient-Enhanced Gaussian Process (GEGP) interpolator surrogate model. This combination enables the accurate and efficient computation of objective function sensitivities, resulting in more reliable and data-efficient surrogate models. As a result, DEBO significantly improves the robustness of BO against local minima, which is particularly beneficial for the non-convex optimization problem characteristic of PM design. The framework is applied to optimize the geometry of a two-dimensional cross-shaped unit cell, maximizing bandgap width at low mid-frequencies. By consistently converging to the global optimum, we demonstrate that DEBO outperforms traditional methods, including derivative-free Bayesian optimization, gradient-based numerical optimization, and metaheuristics. Furthermore, experimental validation of the optimized geometry aligns closely with numerical predictions, confirming the effectiveness of the approach.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.