可积离散Manakov系统和三角Yang-Baxter映射中的呼吸相互作用

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
V. Caudrelier , N.J. Ossi , B. Prinari
{"title":"可积离散Manakov系统和三角Yang-Baxter映射中的呼吸相互作用","authors":"V. Caudrelier ,&nbsp;N.J. Ossi ,&nbsp;B. Prinari","doi":"10.1016/j.physd.2025.134917","DOIUrl":null,"url":null,"abstract":"<div><div>The goal of this work is to obtain a complete characterization of soliton and breather interactions in the integrable discrete Manakov (IDM) system, a vector generalization of the Ablowitz-Ladik model. The IDM system, which in the continuous limit reduces to the Manakov system (i.e., a 2-component vector nonlinear Schrödinger equation), was shown to admit a variety of discrete vector soliton solutions: fundamental solitons, fundamental breathers, and composite breathers. While the interaction of fundamental solitons was studied early on, no results are presently available for other types of soliton-breather and breather-breather interactions. Our study reveals that upon interacting with a fundamental breather, a fundamental soliton becomes a fundamental breather. Conversely, the interaction of two fundamental breathers generically yields two fundamental breathers with polarization shifts, but may also result in a fundamental soliton and a fundamental breather. Composite breathers interact trivially both with each other and with a fundamental soliton or breather. Explicit formulas for the scattering coefficients that characterize fundamental and composite breathers are given. This allows us to interpret the interactions in terms of a refactorization problem and derive the associated Yang–Baxter maps describing the effect of interactions on the polarizations. These give the first examples of parametric Yang–Baxter maps of trigonometric type.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"483 ","pages":"Article 134917"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breather interactions in the integrable discrete Manakov system and trigonometric Yang–Baxter maps\",\"authors\":\"V. Caudrelier ,&nbsp;N.J. Ossi ,&nbsp;B. Prinari\",\"doi\":\"10.1016/j.physd.2025.134917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The goal of this work is to obtain a complete characterization of soliton and breather interactions in the integrable discrete Manakov (IDM) system, a vector generalization of the Ablowitz-Ladik model. The IDM system, which in the continuous limit reduces to the Manakov system (i.e., a 2-component vector nonlinear Schrödinger equation), was shown to admit a variety of discrete vector soliton solutions: fundamental solitons, fundamental breathers, and composite breathers. While the interaction of fundamental solitons was studied early on, no results are presently available for other types of soliton-breather and breather-breather interactions. Our study reveals that upon interacting with a fundamental breather, a fundamental soliton becomes a fundamental breather. Conversely, the interaction of two fundamental breathers generically yields two fundamental breathers with polarization shifts, but may also result in a fundamental soliton and a fundamental breather. Composite breathers interact trivially both with each other and with a fundamental soliton or breather. Explicit formulas for the scattering coefficients that characterize fundamental and composite breathers are given. This allows us to interpret the interactions in terms of a refactorization problem and derive the associated Yang–Baxter maps describing the effect of interactions on the polarizations. These give the first examples of parametric Yang–Baxter maps of trigonometric type.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"483 \",\"pages\":\"Article 134917\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727892500394X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892500394X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本工作的目标是获得可积离散Manakov (IDM)系统中孤子和呼吸子相互作用的完整表征,这是Ablowitz-Ladik模型的矢量推广。IDM系统在连续极限下简化为Manakov系统(即一个2分量向量非线性Schrödinger方程),证明了它可以有各种离散向量孤子解:基本孤子、基本呼吸子和复合呼吸子。虽然基本孤子的相互作用很早就被研究过,但目前还没有其他类型的孤子-呼吸者和呼吸者-呼吸者相互作用的结果。我们的研究表明,在与基本呼吸子相互作用时,基本孤子变成了基本呼吸子。相反,两个基本呼吸子的相互作用通常产生两个具有偏振位移的基本呼吸子,但也可能产生一个基本孤子和一个基本呼吸子。复合呼吸子彼此之间以及与基本孤子或呼吸子之间的相互作用微不足道。给出了基式呼吸器和复合呼吸器散射系数的显式计算公式。这使我们能够从重构问题的角度解释相互作用,并推导出描述相互作用对极化影响的相关Yang-Baxter图。这是第一个三角型参数Yang-Baxter映射的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breather interactions in the integrable discrete Manakov system and trigonometric Yang–Baxter maps
The goal of this work is to obtain a complete characterization of soliton and breather interactions in the integrable discrete Manakov (IDM) system, a vector generalization of the Ablowitz-Ladik model. The IDM system, which in the continuous limit reduces to the Manakov system (i.e., a 2-component vector nonlinear Schrödinger equation), was shown to admit a variety of discrete vector soliton solutions: fundamental solitons, fundamental breathers, and composite breathers. While the interaction of fundamental solitons was studied early on, no results are presently available for other types of soliton-breather and breather-breather interactions. Our study reveals that upon interacting with a fundamental breather, a fundamental soliton becomes a fundamental breather. Conversely, the interaction of two fundamental breathers generically yields two fundamental breathers with polarization shifts, but may also result in a fundamental soliton and a fundamental breather. Composite breathers interact trivially both with each other and with a fundamental soliton or breather. Explicit formulas for the scattering coefficients that characterize fundamental and composite breathers are given. This allows us to interpret the interactions in terms of a refactorization problem and derive the associated Yang–Baxter maps describing the effect of interactions on the polarizations. These give the first examples of parametric Yang–Baxter maps of trigonometric type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信