基于金字塔状结构Ti和InAs的高效宽带太阳能吸收体和热发射体

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Kang An , Mengsi Liu , Hua Yang , Zao Yi , Chaojun Tang , Juan Deng , Junqiao Wang , Boxun Li
{"title":"基于金字塔状结构Ti和InAs的高效宽带太阳能吸收体和热发射体","authors":"Kang An ,&nbsp;Mengsi Liu ,&nbsp;Hua Yang ,&nbsp;Zao Yi ,&nbsp;Chaojun Tang ,&nbsp;Juan Deng ,&nbsp;Junqiao Wang ,&nbsp;Boxun Li","doi":"10.1016/j.physe.2025.116377","DOIUrl":null,"url":null,"abstract":"<div><div>This paper innovatively proposes a broadband solar absorber and thermal emitter with dual-function integration, achieving breakthroughs in the fields of photothermal conversion and high-temperature thermal emission through three core innovations. First, it integrates high-temperature-resistant metal titanium (Ti) and semiconductor indium arsenide (InAs) into a gradient-like pyramid structure for the first time—this design breaks the limitations of single-material systems (InAs has a narrow intrinsic absorption bandwidth, and pure Ti suffers from insufficient radiation stability). Second, a novel triple-resonance mechanism is developed to realize multi-scale light manipulation: Mie resonance at the pyramid apex enables high-efficiency absorption of ultraviolet-near-infrared (UV-NIR) light, Fabry-Perot cavities in the gaps trap mid-infrared light, and plasmonic-semiconductor coupling at the Ti/InAs interface achieves a 3–5-fold enhancement of the local electric field. Third, the symmetric structure ensures polarization independence and incident angle insensitivity, addressing the issue of performance degradation of traditional absorbers under oblique incidence. Finite Difference Time Domain (FDTD) simulations combined with preliminary experimental verification confirm the excellent performance of this design: the broadband average absorption rate in the 280–3000 nm range reaches 99.06 %, and the weighted average absorption efficiency under AM1.5 conditions is 99.02 % with a solar energy loss of only 0.98. It maintains high radiation efficiency at high temperatures: 97.15 % at 1000 K and 97.77 % at 1200 K (benefiting from the high-temperature stability of Ti (melting point: 1668 °C) and the enhanced high-temperature carrier excitation of InAs). Even when the incident angle increases from 0° to 60°, the weighted average absorption efficiency of transverse electric (TE) waves and transverse magnetic (TM) waves remains &gt;91.05 %, outperforming similar symmetric structure. This study realizes the integration of ultra-broadband absorption, high-temperature stable emission, and angle/polarization insensitivity, providing a new paradigm for high-performance solar energy collection and photothermal conversion systems.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"175 ","pages":"Article 116377"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient broadband solar absorber and thermal emitter based on Ti and InAs with pyramid-like structure\",\"authors\":\"Kang An ,&nbsp;Mengsi Liu ,&nbsp;Hua Yang ,&nbsp;Zao Yi ,&nbsp;Chaojun Tang ,&nbsp;Juan Deng ,&nbsp;Junqiao Wang ,&nbsp;Boxun Li\",\"doi\":\"10.1016/j.physe.2025.116377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper innovatively proposes a broadband solar absorber and thermal emitter with dual-function integration, achieving breakthroughs in the fields of photothermal conversion and high-temperature thermal emission through three core innovations. First, it integrates high-temperature-resistant metal titanium (Ti) and semiconductor indium arsenide (InAs) into a gradient-like pyramid structure for the first time—this design breaks the limitations of single-material systems (InAs has a narrow intrinsic absorption bandwidth, and pure Ti suffers from insufficient radiation stability). Second, a novel triple-resonance mechanism is developed to realize multi-scale light manipulation: Mie resonance at the pyramid apex enables high-efficiency absorption of ultraviolet-near-infrared (UV-NIR) light, Fabry-Perot cavities in the gaps trap mid-infrared light, and plasmonic-semiconductor coupling at the Ti/InAs interface achieves a 3–5-fold enhancement of the local electric field. Third, the symmetric structure ensures polarization independence and incident angle insensitivity, addressing the issue of performance degradation of traditional absorbers under oblique incidence. Finite Difference Time Domain (FDTD) simulations combined with preliminary experimental verification confirm the excellent performance of this design: the broadband average absorption rate in the 280–3000 nm range reaches 99.06 %, and the weighted average absorption efficiency under AM1.5 conditions is 99.02 % with a solar energy loss of only 0.98. It maintains high radiation efficiency at high temperatures: 97.15 % at 1000 K and 97.77 % at 1200 K (benefiting from the high-temperature stability of Ti (melting point: 1668 °C) and the enhanced high-temperature carrier excitation of InAs). Even when the incident angle increases from 0° to 60°, the weighted average absorption efficiency of transverse electric (TE) waves and transverse magnetic (TM) waves remains &gt;91.05 %, outperforming similar symmetric structure. This study realizes the integration of ultra-broadband absorption, high-temperature stable emission, and angle/polarization insensitivity, providing a new paradigm for high-performance solar energy collection and photothermal conversion systems.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"175 \",\"pages\":\"Article 116377\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947725002073\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725002073","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文创新性地提出了一种双功能集成的宽带太阳能吸收器和热辐射器,通过三项核心创新,在光热转换和高温热辐射领域取得突破。首先,它首次将耐高温金属钛(Ti)和半导体砷化铟(InAs)集成到一个类似梯度的金字塔结构中,这一设计打破了单材料系统的局限性(InAs固有吸收带宽窄,纯Ti辐射稳定性不足)。其次,建立了一种新的三重共振机制来实现多尺度的光操纵:金字塔顶点的Mie共振可以高效吸收紫外-近红外(UV-NIR)光,间隙中的Fabry-Perot腔可以捕获中红外光,Ti/InAs界面的等离子体-半导体耦合可以实现3 - 5倍的局部电场增强。第三,对称结构保证了偏振无关性和入射角不敏感,解决了传统吸光器在斜入射下性能下降的问题。时域有限差分(FDTD)仿真结合初步实验验证证实了该设计的优异性能:280 ~ 3000 nm范围内的宽带平均吸收率达到99.06%,AM1.5条件下的加权平均吸收效率为99.02%,太阳能损失仅为0.98。它在高温下保持了很高的辐射效率:在1000 K时97.15%,在1200 K时97.77%(得益于Ti的高温稳定性(熔点:1668℃)和InAs的高温载流子激发增强)。当入射角从0°增加到60°时,横向电(TE)波和横向磁(TM)波的加权平均吸收效率仍保持91.05%,优于同类对称结构。该研究实现了超宽带吸收、高温稳定发射和角度/偏振不敏感的集成,为高性能太阳能收集和光热转换系统提供了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient broadband solar absorber and thermal emitter based on Ti and InAs with pyramid-like structure

Efficient broadband solar absorber and thermal emitter based on Ti and InAs with pyramid-like structure
This paper innovatively proposes a broadband solar absorber and thermal emitter with dual-function integration, achieving breakthroughs in the fields of photothermal conversion and high-temperature thermal emission through three core innovations. First, it integrates high-temperature-resistant metal titanium (Ti) and semiconductor indium arsenide (InAs) into a gradient-like pyramid structure for the first time—this design breaks the limitations of single-material systems (InAs has a narrow intrinsic absorption bandwidth, and pure Ti suffers from insufficient radiation stability). Second, a novel triple-resonance mechanism is developed to realize multi-scale light manipulation: Mie resonance at the pyramid apex enables high-efficiency absorption of ultraviolet-near-infrared (UV-NIR) light, Fabry-Perot cavities in the gaps trap mid-infrared light, and plasmonic-semiconductor coupling at the Ti/InAs interface achieves a 3–5-fold enhancement of the local electric field. Third, the symmetric structure ensures polarization independence and incident angle insensitivity, addressing the issue of performance degradation of traditional absorbers under oblique incidence. Finite Difference Time Domain (FDTD) simulations combined with preliminary experimental verification confirm the excellent performance of this design: the broadband average absorption rate in the 280–3000 nm range reaches 99.06 %, and the weighted average absorption efficiency under AM1.5 conditions is 99.02 % with a solar energy loss of only 0.98. It maintains high radiation efficiency at high temperatures: 97.15 % at 1000 K and 97.77 % at 1200 K (benefiting from the high-temperature stability of Ti (melting point: 1668 °C) and the enhanced high-temperature carrier excitation of InAs). Even when the incident angle increases from 0° to 60°, the weighted average absorption efficiency of transverse electric (TE) waves and transverse magnetic (TM) waves remains >91.05 %, outperforming similar symmetric structure. This study realizes the integration of ultra-broadband absorption, high-temperature stable emission, and angle/polarization insensitivity, providing a new paradigm for high-performance solar energy collection and photothermal conversion systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信