BLG-GaAs-BLG异质结构中热电输运的介电衬底依赖性

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Vo Van Tai , Truong Van Tuan , Tran Trong Tai , Le Tri Dat , Nguyen Duy Vy
{"title":"BLG-GaAs-BLG异质结构中热电输运的介电衬底依赖性","authors":"Vo Van Tai ,&nbsp;Truong Van Tuan ,&nbsp;Tran Trong Tai ,&nbsp;Le Tri Dat ,&nbsp;Nguyen Duy Vy","doi":"10.1016/j.physe.2025.116370","DOIUrl":null,"url":null,"abstract":"<div><div>We theoretically study the thermoelectric transport <span><math><mi>S</mi></math></span> in a double-layer bilayer graphene (BLG-GaAs-BLG) system on dielectric substrates (h-BN, Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, HfO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>). Electrons interact with GaAs acoustic phonons via both the deformation potential (acDP) and piezoelectric (acPE) scattering. Results show that piezoelectric scattering dominates the total transport, especially at low carrier density and high dielectric constant. Substrate dielectric constant significantly influences thermopower <span><math><mi>S</mi></math></span>, and the thermopower of the materials is in the order of HfO<span><math><mrow><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub><mo>&gt;</mo></mrow></math></span> Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><mrow><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub><mo>&gt;</mo></mrow></math></span> h-BN. When densities on two BLG layers are unequal, the contribution from acDP scattering <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> decreases (increases) at low (high) densities versus equal densities, while acPE scattering <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> remains stable, making <span><math><mi>S</mi></math></span> largely <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>-dependent. Increasing interlayer distance <span><math><mi>d</mi></math></span> enhances <span><math><mi>S</mi></math></span>, while higher temperature boosts <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> (notably at low densities) with minimal effect on <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>. These insights and substrate-dependent trends demonstrate substrate engineering as a key parameter for optimizing BLG thermoelectric devices.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"175 ","pages":"Article 116370"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dielectric substrate dependence of thermoelectric transport in BLG-GaAs-BLG heterostructures\",\"authors\":\"Vo Van Tai ,&nbsp;Truong Van Tuan ,&nbsp;Tran Trong Tai ,&nbsp;Le Tri Dat ,&nbsp;Nguyen Duy Vy\",\"doi\":\"10.1016/j.physe.2025.116370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We theoretically study the thermoelectric transport <span><math><mi>S</mi></math></span> in a double-layer bilayer graphene (BLG-GaAs-BLG) system on dielectric substrates (h-BN, Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, HfO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>). Electrons interact with GaAs acoustic phonons via both the deformation potential (acDP) and piezoelectric (acPE) scattering. Results show that piezoelectric scattering dominates the total transport, especially at low carrier density and high dielectric constant. Substrate dielectric constant significantly influences thermopower <span><math><mi>S</mi></math></span>, and the thermopower of the materials is in the order of HfO<span><math><mrow><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub><mo>&gt;</mo></mrow></math></span> Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><mrow><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub><mo>&gt;</mo></mrow></math></span> h-BN. When densities on two BLG layers are unequal, the contribution from acDP scattering <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> decreases (increases) at low (high) densities versus equal densities, while acPE scattering <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> remains stable, making <span><math><mi>S</mi></math></span> largely <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>-dependent. Increasing interlayer distance <span><math><mi>d</mi></math></span> enhances <span><math><mi>S</mi></math></span>, while higher temperature boosts <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> (notably at low densities) with minimal effect on <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>. These insights and substrate-dependent trends demonstrate substrate engineering as a key parameter for optimizing BLG thermoelectric devices.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"175 \",\"pages\":\"Article 116370\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947725002000\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725002000","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

从理论上研究了介电衬底(h-BN, Al2O3, HfO2)上双层石墨烯(BLG-GaAs-BLG)体系的热电输运S。电子通过变形势(acDP)和压电(acPE)散射与砷化镓声子相互作用。结果表明,在低载流子密度和高介电常数条件下,压电散射在总输运中占主导地位。衬底介电常数显著影响热功率S,材料的热功率顺序为HfO2>; Al2O3> h-BN。当两个BLG层的密度不相等时,acDP散射对Sd的贡献在低(高)密度下比等密度下减小(增加),而acPE散射对Sg的贡献保持稳定,使得S在很大程度上依赖于Sg。增加层间距离d可以提高S,而温度升高可以提高Sd(特别是在低密度下),但对Sg的影响很小。这些见解和与衬底相关的趋势表明,衬底工程是优化BLG热电器件的关键参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dielectric substrate dependence of thermoelectric transport in BLG-GaAs-BLG heterostructures
We theoretically study the thermoelectric transport S in a double-layer bilayer graphene (BLG-GaAs-BLG) system on dielectric substrates (h-BN, Al2O3, HfO2). Electrons interact with GaAs acoustic phonons via both the deformation potential (acDP) and piezoelectric (acPE) scattering. Results show that piezoelectric scattering dominates the total transport, especially at low carrier density and high dielectric constant. Substrate dielectric constant significantly influences thermopower S, and the thermopower of the materials is in the order of HfO2> Al2O3> h-BN. When densities on two BLG layers are unequal, the contribution from acDP scattering Sd decreases (increases) at low (high) densities versus equal densities, while acPE scattering Sg remains stable, making S largely Sg-dependent. Increasing interlayer distance d enhances S, while higher temperature boosts Sd (notably at low densities) with minimal effect on Sg. These insights and substrate-dependent trends demonstrate substrate engineering as a key parameter for optimizing BLG thermoelectric devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信