{"title":"探测铜表面水-甲酸盐相互作用:铜表面共吸附的DFT方法(111)","authors":"Septia Eka Marsha Putra , Indah Gumala Andirasdini , Fahdzi Muttaqien","doi":"10.1016/j.comptc.2025.115485","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding water’s role in stabilizing adsorbates on metal surfaces is key to improving catalytic systems. Using density functional theory (DFT), we investigated the co-adsorption of formate (HCOO) and water on Cu(111). Three formate geometries were evaluated: bidentate (<span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>ads</mi></mrow></msub><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>82</mn><mspace></mspace><mi>eV</mi></mrow></math></span>), monodentate via hydrogen (<span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>ads</mi></mrow></msub><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>27</mn><mspace></mspace><mi>eV</mi></mrow></math></span>), and monodentate via oxygen (<span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>ads</mi></mrow></msub><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>24</mn><mspace></mspace><mi>eV</mi></mrow></math></span>), with bidentate being the most stable. Co-adsorption with H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O enhances stability: bidentate formate shows interaction energies of <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>int</mi></mrow></msub><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>32</mn><mspace></mspace><mi>eV</mi></mrow></math></span> (one H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O) and <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>53</mn><mspace></mspace><mi>eV</mi></mrow></math></span> (two H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O), while monodentate forms show much weaker stabilization. The approximate 0.20 eV increase in stability per added water molecule arises mainly from hydrogen bonding between water and formate oxygens. The enhanced stability in the two-water case arises from cooperative effects, where one H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O forms a hydrogen bond with the formate oxygen and the second H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O interacts weakly with the Cu surface. These results highlight water’s key role in stabilizing bidentate formate on Cu surfaces, reinforcing its thermodynamic preference in aqueous conditions.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1254 ","pages":"Article 115485"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing water–formate interactions on copper surfaces: A DFT approach to co-adsorption on Cu(111)\",\"authors\":\"Septia Eka Marsha Putra , Indah Gumala Andirasdini , Fahdzi Muttaqien\",\"doi\":\"10.1016/j.comptc.2025.115485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding water’s role in stabilizing adsorbates on metal surfaces is key to improving catalytic systems. Using density functional theory (DFT), we investigated the co-adsorption of formate (HCOO) and water on Cu(111). Three formate geometries were evaluated: bidentate (<span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>ads</mi></mrow></msub><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>82</mn><mspace></mspace><mi>eV</mi></mrow></math></span>), monodentate via hydrogen (<span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>ads</mi></mrow></msub><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>27</mn><mspace></mspace><mi>eV</mi></mrow></math></span>), and monodentate via oxygen (<span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>ads</mi></mrow></msub><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>24</mn><mspace></mspace><mi>eV</mi></mrow></math></span>), with bidentate being the most stable. Co-adsorption with H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O enhances stability: bidentate formate shows interaction energies of <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>int</mi></mrow></msub><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>32</mn><mspace></mspace><mi>eV</mi></mrow></math></span> (one H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O) and <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>53</mn><mspace></mspace><mi>eV</mi></mrow></math></span> (two H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O), while monodentate forms show much weaker stabilization. The approximate 0.20 eV increase in stability per added water molecule arises mainly from hydrogen bonding between water and formate oxygens. The enhanced stability in the two-water case arises from cooperative effects, where one H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O forms a hydrogen bond with the formate oxygen and the second H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O interacts weakly with the Cu surface. These results highlight water’s key role in stabilizing bidentate formate on Cu surfaces, reinforcing its thermodynamic preference in aqueous conditions.</div></div>\",\"PeriodicalId\":284,\"journal\":{\"name\":\"Computational and Theoretical Chemistry\",\"volume\":\"1254 \",\"pages\":\"Article 115485\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Theoretical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210271X25004219\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X25004219","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Probing water–formate interactions on copper surfaces: A DFT approach to co-adsorption on Cu(111)
Understanding water’s role in stabilizing adsorbates on metal surfaces is key to improving catalytic systems. Using density functional theory (DFT), we investigated the co-adsorption of formate (HCOO) and water on Cu(111). Three formate geometries were evaluated: bidentate (), monodentate via hydrogen (), and monodentate via oxygen (), with bidentate being the most stable. Co-adsorption with HO enhances stability: bidentate formate shows interaction energies of (one HO) and (two HO), while monodentate forms show much weaker stabilization. The approximate 0.20 eV increase in stability per added water molecule arises mainly from hydrogen bonding between water and formate oxygens. The enhanced stability in the two-water case arises from cooperative effects, where one HO forms a hydrogen bond with the formate oxygen and the second HO interacts weakly with the Cu surface. These results highlight water’s key role in stabilizing bidentate formate on Cu surfaces, reinforcing its thermodynamic preference in aqueous conditions.
期刊介绍:
Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.